17 research outputs found

    The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load

    Get PDF
    : Two related ER oxidation 1 (ERO1) proteins, ERO1α and ERO1β, dynamically regulate the redox environment in the mammalian endoplasmic reticulum (ER). Redox changes in cysteine residues on intralumenal loops of calcium release and reuptake channels have been implicated in altered calcium release and reuptake. These findings led us to hypothesize that altered ERO1 activity may affect cardiac functions that are dependent on intracellular calcium flux. We established mouse lines with loss of function insertion mutations in Ero1l and Ero1lb encoding ERO1α and ERO1β. The peak amplitude of calcium transients in homozygous Ero1α mutant adult cardiomyocytes was reduced to 42.0 ± 2.2% (n=10, P ≤ 0.01) of values recorded in wild-type cardiomyocytes. Decreased ERO1 activity blunted cardiomyocyte inotropic response to adrenergic stimulation and sensitized mice to adrenergic blockade. Whereas all 12 wild-type mice survived challenge with 4 mg/kg esmolol, 6 of 8 compound Ero1l and Ero1lb mutant mice succumbed to this level of β adrenergic blockade (P ≤ 0.01). In addition, mice lacking ERO1α were partially protected against progressive heart failure in a transaortic constriction model [at 10 wk postprocedure, fractional shortening was 0.31 ± 0.02 in the mutant (n=20) vs. 0.23 ± 0.03 in the wild type (n=18); P ≤ 0.01]. These findings establish a role for ERO1 in calcium homeostasis and suggest that modifying the lumenal redox environment may affect the progression of heart failure

    The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation‐coupled calcium release and response to hemodynamic load

    No full text
    Two related ER oxidation 1 (ERO1) proteins, ERO1α and ERO1β, dynamically regulate the redox environment in the mammalian endoplasmic reticulum (ER). Redox changes in cysteine residues on intralumenal loops of calcium release and reuptake channels have been implicated in altered calcium release and reuptake. These findings led us to hypothesize that altered ERO1 activity may affect cardiac functions that are dependent on intracellular calcium flux. We established mouse lines with loss of function insertion mutations in Ero1l and Ero1lb encoding ERO1α and ERO1β. The peak amplitude of calcium transients in homozygous Ero1α mutant adult cardiomyocytes was reduced to 42.0 ± 2.2% (n=10, P≤0.01) of values recorded in wild-type cardiomyocytes. Decreased ERO1 activity blunted cardiomyocyte inotropic response to adrenergic stimulation and sensitized mice to adrenergic blockade. Whereas all 12 wild-type mice survived challenge with 4 mg/kg esmolol, 6 of 8 compound Ero1l and Ero1lb mutant mice succumbed to this level of β adrenergic blockade (P≤0.01). In addition, mice lacking ERO1α were partially protected against progressive heart failure in a transaortic constriction model [at 10 wk postprocedure, fractional shortening was 0.31±0.02 in the mutant (n=20) vs. 0.23±0.03 in the wild type (n=18); P≤0.01]. These findings establish a role for ERO1 in calcium homeostasis and suggest that modifying the lumenal redox environment may affect the progression of heart failure.—Chin, K. T., Kang, G., Qu, J., Gardner, L. B., Coetzee, W. A., Zito, E., Fishman, G. I., Ron, R. The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load

    AlGaN/GaN MOS-HEMT enabled optoelectronic artificial synaptic devices for neuromorphic computing

    No full text
    Artificial optoelectronic synaptic transistors have attracted extensive research interest as an essential component for neuromorphic computing systems and brain emulation applications. However, performance challenges still remain for synaptic devices, including low energy consumption, high integration density, and flexible modulation. Employing trapping and detrapping relaxation, a novel optically stimulated synaptic transistor enabled by the AlGaN/GaN hetero-structure metal-oxide semiconductor high-electron-mobility transistor has been successfully demonstrated in this study. Synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation index, and transition from short-term memory to long-term memory, are well mimicked and explicitly investigated. In a single EPSC event, the AlGaN/GaN synaptic transistor shows the characteristics of low energy consumption and a high signal-to-noise ratio. The EPSC of the synaptic transistor can be synergistically modulated by both optical stimulation and gate/drain bias. Moreover, utilizing a convolution neural network, hand-written digit images were used to verify the data preprocessing capability for neuromorphic computing applications
    corecore