781 research outputs found

    CPMLHO:Hyperparameter Tuning via Cutting Plane and Mixed-Level Optimization

    Full text link
    The hyperparameter optimization of neural network can be expressed as a bilevel optimization problem. The bilevel optimization is used to automatically update the hyperparameter, and the gradient of the hyperparameter is the approximate gradient based on the best response function. Finding the best response function is very time consuming. In this paper we propose CPMLHO, a new hyperparameter optimization method using cutting plane method and mixed-level objective function.The cutting plane is added to the inner layer to constrain the space of the response function. To obtain more accurate hypergradient,the mixed-level can flexibly adjust the loss function by using the loss of the training set and the verification set. Compared to existing methods, the experimental results show that our method can automatically update the hyperparameters in the training process, and can find more superior hyperparameters with higher accuracy and faster convergence

    Acute Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or paraquat on core temperature in C57BL/6J mice

    Get PDF
    Background: MPTP and paraquat are two compounds that have been used to model Parkinson’s disease in mice. Previous studies in two non-traditional strains of mice have shown that a single dose of MPTP can induce changes in body temperature, while the effects of paraquat have not been examined. Examination of body temperature is important since small fluctuations in an animal’s core temperature can significantly affect drug metabolism, and if significant enough can even culminate in an animal’s death. Objective: To determine how external heating can alter the survival of C57BL/6J mice following MPTP administration. Methods: In this study, we examine the effects of MPTP (4×20 mg/kg, 2 hours apart) and paraquat (2×10 mg/kg/week for 3 weeks) on core temperature of C57BL/6J mice. Correlations of purine and catecholamine levels were also done in mice treated with MPTP. Results: We find that MPTP induces a significant hypothermia in C57BL/6J mice that reduces their core temperature below the limit of fatal hypothermia. Unlike MPTP, paraquat did not induce a significant hypothermia. Placement of animals on heating pads significantly abrogates the loss of core temperature. In both heated and non-heated conditions, mice treated with MPTP showed a significant depletion of ATP within 2 hours of administration in both striatum and SN that started to recover 2 hours after MPTP administration was complete. Striatal DA and DOPAC are significantly reduced starting 4–6 hours after MPTP. Conclusions: The fatal hypothermic effects of MPTP can be abrogated through use of external heating

    Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem

    Get PDF
    Abstract Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release with crop uptake, offering the potential for enhanced N use efficiency (NUE) and reduced losses. Can EEFs play a significant role in helping address the N management challenge? Here we present a comprehensive analysis of worldwide studies published in 1980–2016 evaluating four major types of EEFs (polymer-coated fertilizers PCF, nitrification inhibitors NI, urease inhibitors UI, and double inhibitors DI, i.e. urease and nitrification inhibitors combined) regarding their effectiveness in increasing yield and NUE and reducing N losses. Overall productivity and environmental efficacy depended on the combination of EEF type and cropping systems, further affected by biophysical conditions. Best scenarios include: (i) DI used in grassland (n = 133), averaging 11% yield increase, 33% NUE improvement, and 47% decrease in aggregated N loss (sum of NO3-, NH3, and N2O, totaling 84 kg N/ha); (ii) UI in rice-paddy systems (n = 100), with 9% yield increase, 29% NUE improvement, and 41% N-loss reduction (16 kg N/ha). EEF efficacies in wheat and maize systems were more complicated and generally less effective. In-depth analysis indicated that the potential benefits of EEFs might be best achieved when a need is created, for example, by downward adjusting N application from conventional rate. We conclude that EEFs can play a significant role in sustainable agricultural production but their prudent use requires firstly eliminating any fertilizer mismanagement plus the implementation of knowledge-based N management practices

    A Review of the Engineering Role of Burrowing Animals: Implication of Chinese Pangolin as an Ecosystem Engineer

    Get PDF
    Ecosystem engineers are organisms that alter the distribution of resources in the environment by creating, modifying, maintaining and/or destroying the habitat. They can affect the structure and function of the whole ecosystem furthermore. Burrowing engineers are an important group in ecosystem engineers as they play a critical role in soil translocation and habitat creation in various types of environment.However, few researchers have systematically summarized and analyzed the studies of burrowing engineers. We reviewing the existing ecological studies of burrowing engineer about their interaction with habitat through five directions: (1) soil turnover; (2)changing soil physicochemical properties; (3) changing plant community structure; (4) providing limited resources for commensal animals;and/or (5) affecting animal communities. The Chinese pangolin (Manis pentadactyla) is a typical example of burrowing mammals, in part (5), we focus on the interspecific relationships among burrow commensal species of Chinese pangolin. The engineering effects vary with environmental gradient, literature indicates that burrowing engineer play a stronger role in habitat transformation in the tropical and subtropical areas.The most common experiment method is comparative measurements (include different spatial and temporal scale),manipulative experiment is relatively few. We found that most of the engineering effects had positive feedback to the local ecosystem, increased plant abundance and resilience, increased biodiversity and consequently improved ecosystem functioning. With the global background of dramatic climate change and biodiversity loss in recent decades, we recommend future studies should improving knowledge of long-term engineering effects on population scale and landscape scale, exploring ecological cascades through trophic and engineering pathways, to better understand the attribute of the burrowing behavior of engineers to restore ecosystems and habitat creation. The review is presented as an aid to systematically expound the engineering effect of burrowing animals in the ecosystem, and provided new ideas and advice for planning and implementing conservation management

    Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1

    Get PDF
    Background: Biomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process. Results: It was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2+ and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2+ and urea were 50 \u3bcM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite. Conclusions: The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery

    Reconstruction of Oomycete Genome Evolution Identifies Differences in Evolutionary Trajectories Leading to Present-Day Large Gene Families

    Get PDF
    The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ∼10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens

    Study of J/ψJ/\psi and ψ(3686)→Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)→Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=−0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)→ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22
    • …
    corecore