584 research outputs found

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension 34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)

    Topological minors of cover graphs and dimension

    Full text link
    We show that posets of bounded height whose cover graphs exclude a fixed graph as a topological minor have bounded dimension. This result was already proven by Walczak. However, our argument is entirely combinatorial and does not rely on structural decomposition theorems. Given a poset with large dimension but bounded height, we directly find a large clique subdivision in its cover graph. Therefore, our proof is accessible to readers not familiar with topological graph theory, and it allows us to provide explicit upper bounds on the dimension. With the introduced tools we show a second result that is supporting a conjectured generalization of the previous result. We prove that (k+k)(k+k)-free posets whose cover graphs exclude a fixed graph as a topological minor contain only standard examples of size bounded in terms of kk.Comment: revised versio

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing
    corecore