14 research outputs found
Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones
In order to address the problem of the durability deficiency of concrete in wave splash zones in a harsh marine environment, this paper investigates the effects of coupled carbonation, sulfate, and chloride salts on the strength, capillary water absorption, and ion migration properties of cement concrete incorporated with metakaolin, and characterizes the pore structural changes with the mercury-pressure method and AC impedance technique. The results show that, compared with a single chloride salt environment, the improvement in mortar strength and impermeability with carbonation coupling is almost positively correlated with the calcium content in the specimen, and renders its pore structure more refined and denser. In contrast, the presence of sulfate reduces mortar strength and increases the ion migration coefficient. When the three factors of sulfate, carbonation, and chloride salt were coupled, damage to the strength and pore structure of the specimens was the most significant, but the specimen incorporated with 30% metakaolin had its strength improved compared with the blank group specimen; from the perspective of pore structural parameters and transport coefficient, the microstructure was denser, and the impermeability was significantly improved
Application of stacked carbon fiber electrodes in desalination of membrane capacitive deionization
In order to improve the total adsorption capacity and desalination performance of the electrode in electrochemical desalination device, the stacked carbon fibers were used as the electrode, and titanium mesh was added between the electrodes to enhance the conductivity between the electrode layers. The control variaties was used to design desalination experiments to investigate the effects of inlet salt concentration, stacked carbon fiber electrode thickness and increased titanium mesh conductor on desalination performanceThe adsorption process was analyzed from the perspective of adsorption thermodynamics and kinetics. The experimental results show that stacking carbon fiber electrodes could lead to a decrease in desalination efficiency, the adsorption capacity of each layer decreases from 974 mg/g to 286 mg/g. But adding multiple layers of titanium mesh as a conductive material can effectively improve the desalination rate. When the spacing increases by three layers of titanium mesh, the adsorption speed increases by 21 times compared to the first layer. Stacking carbon fiber electrodes can solve the problem of limited adsorption capacity of single-layer electrodes and inability of handling high concentration saline water for a long time. Adding titanium mesh can effectively improve the conductivity of multi-layer electrodes, thereby improving desalination performance. It provides new ideas for the design of multi-layer electrodes and the improvement of electrode conductivity, and has guiding significance for the engineering application of capacitive deionization
Identification and Characterization of a Novel Prophage Lysin against <i>Streptococcus dysgalactiae</i>
Streptococcus dysgalactiae infection can cause bovine mastitis and lead to huge economic losses for the dairy industry. The abuse of antibiotics has resulted in growing drug resistance of S. dysgalactiae, which causes hard-to-treat infections. Bacteriophage lysin, as a novel antibacterial agent, has great potential for application against drug-resistant gram-positive bacteria. However, few studies have been conducted on the prophage lysin of S. dysgalactiae. In this study, we mined a novel prophage lysin, named Lys1644, from a clinical S. dysgalactiae isolate by genome sequencing and bioinformatic analysis. Lys1644 was expressed and purified, and the lytic activity, antibacterial spectrum, optimal pH and temperature, lytic activity in milk in vitro, and synergistic bacteriostasis with antibiotics were assessed. The Lys1644 prophage lysin showed high bacteriolysis activity specifically on S. dysgalactiae, which resulted in CFU 100-fold reduction in milk. Moreover, Lys1644 maintained high activity over a wide pH range (pH 5–10) and a wide temperature range (4–42 °C). Synergistic bacteriostatic experiments showed that the combination of low-dose Lys1644 (50 μg/mL) with a subinhibitory concentration of aminoglycoside antibiotics (kanamycin or spectinomycin) can completely inhibit bacterial growth, suggesting that the combination of Lys1644 and antibiotics could be an effective therapeutic strategy against S. dysgalactiae infection
Microwave-assisted synthesis of amorphous cobalt nanoparticle decorated N-doped biochar for highly efficient degradation of sulfamethazine via peroxymonosulfate activation
In the present work, a microwave-assisted and secondary roasting preparation process was used to synthesize nanocomposite materials. These materials were modified with amorphous cobalt nanoparticles (Co NPs) on the surface of biochar doped with different nitrogen sources (melamine (Me), 1,10-phenanthroline (Ph), and urea (Ur)). The nanocomposite (Co-N-C(Ur)) with urea as the nitrogen source promoted the generation of mesopores on the surface of carbon materials due to its evaporation during the preparation process thus enhancing the attachment sites of cobalt nanoparticles. The Co-N-C(Ur) had a more significant degradation effect on the primary carcinogen sulfamethazine (SMT) by activating peroxymonosulfate (PMS). The degradation rate of SMT pollutants was 96.6 % within 30 min. The optimal reaction conditions were as follows: catalyst dosage of 0.4 g L−1, PMS dosage of 0.812 mM, SMT concentration of 10 mg L−1, and pH of 5.67. Additionally, the Co-N-C(Ur) catalysts possess excellent specific surface area due to the evaporation effect of the calcination process of urea itself compared to other nitrogen source doping. Electrochemical tests revealed that the composites prepared with urea as the nitrogen source had higher PMS-induced current density and lowered material impedance values, which effectively promoted the catalytic performance of SMT degradation. Concurrently, the Co-N-C (Ur) + PMS reaction system exhibited excellent catalytic performance against other antibiotic organic pollutants. Subsequently, through the capture experiments and electron paramagnetic resonance technical analyses, it was determined that the singlet 1O2 played a leading role in the reaction system. Finally, a thorough liquid chromatography-mass spectrometry analysis suggested the possible SMT degradation pathways, thereby providing a new strategy for the subsequent heterogeneous catalysts to degrade persistent organic pollutants
Non-Stacked γ-Fe2O3/C@TiO2 Double-Layer Hollow Nanoparticles for Enhanced Photocatalytic Applications under Visible Light
Herein, a non-stacked γ-Fe2O3/C@TiO2 double-layer hollow nano photocatalyst has been developed with ultrathin nanosheets-assembled double shells for photodegradation phenol. High catalytic performance was found that the phenol could be completely degraded in 135 min under visible light, due to the moderate band edge position (VB at 0.59 eV and CB at −0.66 eV) of the non-stacked γ-Fe2O3/C@TiO2, which can expand the excitation wavelength range into the visible light region and produce a high concentration of free radicals (such as ·OH, ·O2−, holes). Furthermore, the interior of the hollow composite γ-Fe2O3 is responsible for charge generation, and the carbon matrix facilitates charge transfer to the external TiO2 shell. This overlap improved the selection/utilization efficiency, while the unique non-stacked double-layered structure inhibited initial charge recombination over the photocatalysts. This work provides new approaches for photocatalytic applications with γ-Fe2O3/C-based materials
ClpP protease modulates bacterial growth, stress response, and bacterial virulence in Brucella abortus
Abstract The process of intracellular proteolysis through ATP-dependent proteases is a biologically conserved phenomenon. The stress responses and bacterial virulence of various pathogenic bacteria are associated with the ATP-dependent Clp protease. In this study, a Brucella abortus 2308 strain, ΔclpP, was constructed to characterize the function of ClpP peptidase. The growth of the ΔclpP mutant strain was significantly impaired in the TSB medium. The results showed that the ΔclpP mutant was sensitive to acidic pH stress, oxidative stress, high temperature, detergents, high osmotic environment, and iron deficient environment. Additionally, the deletion of clpP significantly affected Brucella virulence in macrophage and mouse infection models. Integrated transcriptomic and proteomic analyses of the ΔclpP strain showed that 1965 genes were significantly affected at the mRNA and/or protein levels. The RNA-seq analysis indicated that the ΔclpP strain exhibited distinct gene expression patterns related to energy production and conversion, cell wall/membrane/envelope biogenesis, carbohydrate transport, and metabolism. The iTRAQ analysis revealed that the differentially expressed proteins primarily participated in amino acid transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis, transport and catabolism. This study provided insights into the preliminary molecular mechanism between Clp protease to bacterial growth, stress response, and bacterial virulence in Brucella strains
Exploring Phenotype, Genotype, and the Production of Promising GABA Postbiotics by <i>Lactiplantibacillus plantarum</i>: A Comprehensive Investigation
This study aims to investigate the probiotic properties of various isolated strains of Lactiplantibacillus plantarum. Specifically, the focus is on examining the expression of the glutamic acid decarboxylase (GAD) gene and its role in the production of gamma-aminobutyric acid (GABA), a promising postbiotic metabolite. The investigation includes comprehensive analyses of morphology, genetics, resilience against bile, NaCl, and simulated pancreatin juice (SPJ), carbohydrate fermentation patterns, antibacterial activity, susceptibility to antibiotics, and the presence of β-D-galactosidase and GAD enzymes. Six L. plantarum strains exhibited remarkable resilience against bile, NaCl, and SPJ, as well as susceptibility to antibiotics and antagonistic behavior against pathogens. These strains also showed the presence of β-D-galactosidase. Additionally, five L. plantarum strains were found to harbor the gad gene. Further biochemical analysis of four specific L. plantarum strains revealed promising profiles consisting of antibiotics, vitamins, hormones, and a diverse array of metabolites with potential immunotherapeutic properties. This study highlights the substantial potential of Lactiplantibacillus plantarum in generating beneficial postbiotic metabolites. The identified strains offer exciting avenues for further exploration, with potential applications in functional foods and pharmaceuticals. This research opens up possibilities for harnessing the probiotic and postbiotic potential of L. plantarum to develop novel products with health-promoting properties