70,338 research outputs found
Recommended from our members
TDLAS Detection of propane and butane gas over the near-infrared wavelength range from 1678nm to 1686nm
It is important in the petrochemical industry that there are high sensitivity, high accuracy, low-power consumption and intrinsically safe methods for the detection of propane, butane and their gas mixtures, to provide early warning of potential explosion hazards during both storage and transportation of oil and gas. This paper proposes a 'proof of principle' method for the detection of propane and butane using a Tunable Diode Laser Absorption Spectroscopy (TDLAS) technique over the near-infrared wavelength range from 1678nm to 1686nm. This method is relatively inexpensive to implement and is thus more practical, compared with detection methods using wavelengths further into the infra-red, near 3.3μm. The minimum detectable concentration was found to be low as 300ppm for propane or butane. Importantly, the relative measurement errors were all below 3% LEL, which meets the requirements from the petrochemical and oil-gas storage and transportation industries for a field-based system for monitoring of combustible gases
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
Gate-controlled generation of optical pulse trains using individual carbon nanotubes
We report on optical pulse-train generation from individual air-suspended
carbon nanotubes under an application of square-wave gate voltages.
Electrostatically-induced carrier accummulation quenches photoluminescence,
while a voltage sign reversal purges those carriers, resetting the nanotubes to
become luminescent temporarily. Frequency domain measurements reveal
photoluminescence recovery with characteristic frequencies that increase with
excitation laser power, showing that photoexcited carriers quench the emission
in a self-limiting manner. Time-resolved measurements directly confirm the
presence of an optical pulse train sychronized to the gate voltage signal, and
flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure
Recommended from our members
Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems
Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks
The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism
Recommended from our members
Split Parallel Semibridge Switching Cells for Full-Power-Range Efficiency Improvement
- …