382 research outputs found

    Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes

    Full text link
    Generalized Painleve-Gullstrand metrics are explicitly constructed for the Kerr-Newman family of charged rotating black holes. These descriptions are free of all coordinate singularities; moreover, unlike the Doran and other proposed metrics, an extra tunable function is introduced to ensure all variables in the metrics remain real for all values of the mass M, charge Q, angular momentum aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein one-forms at the horizon(s) is imposed and coordinate singularities are eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman black holes are analysed and discussed; and it is revealed that some of these descriptions are actually not related by physical Lorentz transformations to the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is the reason complex components appear (for certain ranges of the radial coordinate) in these metrics. As an application of our constructions the correct effective Hawking temperature for Kerr black holes is derived with the method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking radiation for Kerr black holes with Parikh-Wilczek metho

    AMiBA Wideband Analog Correlator

    Get PDF
    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.Comment: 28 pages, 23 figures, ApJ in press

    AMiBA: Broadband Heterodyne CMB Interferometry

    Get PDF
    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first science results on the detection of galaxy clusters via the Sunyaev Zel'dovich effect. The science objectives required small reflectors in order to sample large scale structures (20') while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. MMIC technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operations since 2006, and we are in the process to expand the array from 7 to 13 elements.Comment: 10 pages, 6 figures, ApJ in press; a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/mtc_highreso.pd

    Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs

    Get PDF
    BACKGROUND: Reducing sympathetic efferent outflow from the stellate ganglia (SG) may be antiarrhythmic. OBJECTIVE: The purpose of this study was to test the hypothesis that chronic thoracic subcutaneous nerve stimulation (ScNS) could reduce SG nerve activity (SGNA) and control paroxysmal atrial tachycardia (PAT). METHODS: Thoracic ScNS was performed in 8 dogs while SGNA, vagal nerve activity (VNA), and subcutaneous nerve activity (ScNA) were monitored. An additional 3 dogs were used for sham stimulation as controls. RESULTS: Xinshu ScNS and left lateral thoracic nerve ScNS reduced heart rate (HR). Xinshu ScNS at 3.5 mA for 2 weeks reduced mean average SGNA from 5.32 μV (95% confidence interval [CI] 3.89-6.75) at baseline to 3.24 μV (95% CI 2.16-4.31; P = .015) and mean HR from 89 bpm (95% CI 80-98) at baseline to 83 bpm (95% CI 76-90; P = .007). Bilateral SG showed regions of decreased tyrosine hydroxylase staining with increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive nuclei in 18.47% (95% CI 9.68-46.62) of all ganglion cells, indicating cell death. Spontaneous PAT episodes were reduced from 9.83 per day (95% CI 5.77-13.89) in controls to 3.00 per day (95% CI 0.11-5.89) after ScNS (P = .027). Left lateral thoracic nerve ScNS also led to significant bilateral SG neuronal death and significantly reduced average SGNA and HR in dogs. CONCLUSION: ScNS at 2 different sites in the thorax led to SG cell death, reduced SGNA, and suppressed PAT in ambulatory dogs

    AMiBA: scaling relations between the integrated Compton-y and X-ray derived temperature, mass, and luminosity

    Full text link
    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.Comment: Accepted by ApJ; 8 pages, 3 figures, 5 table

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd

    Mass and Hot Baryons in Massive Galaxy Clusters from Subaru Weak Lensing and AMiBA SZE Observations

    Full text link
    We present a multiwavelength analysis of a sample of four hot (T_X>8keV) X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA Sunyaev-Zel'dovich effect (SZE) and Subaru weak lensing observations, combined with published X-ray temperatures, to examine the distribution of mass and the intracluster medium (ICM) in massive cluster environments. Our observations show that A2261 is very similar to A1689 in terms of lensing properties. Many tangential arcs are visible around A2261, with an effective Einstein radius \sim 40 arcsec (at z \sim 1.5), which when combined with our weak lensing measurements implies a mass profile well fitted by an NFW model with a high concentration c_{vir} \sim 10, similar to A1689 and to other massive clusters. The cluster A2142 shows complex mass substructure, and displays a shallower profile (c_{vir} \sim 5), consistent with detailed X-ray observations which imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature associated with mass substructure lying ahead of the sharp north-west edge of the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain highly elliptical mass and ICM distributions at all radii, consistent with other X-ray and strong lensing work. Our cluster gas fraction measurements, free from the hydrostatic equilibrium assumption, are overall in good agreement with published X-ray and SZE observations, with the sample-averaged gas fraction of = 0.133 \pm 0.027, for our sample = (1.2 \pm 0.1) \times 10^{15} M_{sun} h^{-1}. When compared to the cosmic baryon fraction f_b = \Omega_b/\Omega_m constrained by the WMAP 5-year data, this indicates /f_b = 0.78 \pm 0.16, i.e., (22 \pm 16)% of the baryons are missing from the hot phase of clusters.Comment: accepted for publication in ApJ; high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/ms_highreso.pd

    Tests of AMiBA Data Integrity

    Full text link
    We describe methods used to validate data from the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA), an interferometric array designed to measure the Sunyaev-Zel'dovich effect and the anisotropy of the Cosmic Microwave Background (CMB). We perform several statistical tests on data from pointed galaxy cluster observations taken in 2007 and noise data from long-term blank sky observations and measurements with the feeds covered by the absorbers. We apply power spectrum analysis, cross power spectrum analysis among different outputs with different time lags in our analog correlator, and sample variance law tests to noise data. We find that (1) there is no time variation of electronic offsets on the time scale of our two-patch observations (~10 minutes); (2) noise is correlated by less than 10% between different lags; and (3) the variance of noise scales with the inverse of time. To test the Gaussianity of the data, we apply Kolmogorov-Smirnov (K-S) tests to cluster data, and find that a 5% significance level efficiently detects data sets with known hardware problems without rejecting an excess of acceptable data. We also calculate third- and fourth-order moments and cumulants for the noise residual visibilities and find that about 95% of our data are within the 99% confidence regions of Gaussianity.Comment: 15 pages, 5 figures, accepted for publication in Ap
    corecore