160 research outputs found

    Introduction Of A Smart Diet Manager In IoT

    Get PDF
    Excessive consumption leads to 7 trends of crises, including destruction of the atmosphere, energy crisis, social decline and conflicts. Over consumption also deteriorates human health. To reduce excessive consumption not only can improve health, it can also reduce transportation from consumption, livestock raise and sale, and medical care. The reducing over consumption can benefit human health and environmental protection through supply chain management. This motivates us to devise an innovative product. Our imaginative innovative product is a new smart diet manager (DM). After a survey to potential users, it reveals that the new features can help reduce the excessive consumption and deterioration of the human health as well as the destruction of environment. Enterprises can also achieve their social responsibilities through the implementation and popularization of the DM as soon as possible

    Docosahexaenoic acid has influence on action potentials and transient outward potassium currents of ventricular myocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are many reports about the anti-arrhythmic effects of ω-3 polyunsaturated fatty acids, however, the mechanisms are still not completely delineated. The purpose of this study was to investigate the characteristics of action potentials and transient outward potassium currents (I<sub>to</sub>) of Sprague-Dawley rat ventricular myocytes and the effects of docosahexaenoic acid (DHA) on action potentials and I<sub>to</sub>.</p> <p>Methods</p> <p>The calcium-tolerant rat ventricular myocytes were isolated by enzyme digestion. Action potentials and I<sub>to </sub>of epicardial, mid-cardial and endocardial ventricular myocytes were recorded by whole-cell patch clamp technique.</p> <p>Results</p> <p><b>1.</b> Action potential durations (APDs) were prolonged from epicardial to endocardial ventricular myocytes (<it>P </it>< 0.05). <b>2.</b> I<sub>to </sub>current densities were decreased from epicardial to endocardial ventricular myocytes, which were 59.50 ± 15.99 pA/pF, 29.15 ± 5.53 pA/pF, and 12.29 ± 3.62 pA/pF, respectively at +70 mV test potential (<it>P </it>< 0.05). <b>3.</b> APDs were gradually prolonged with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, however, APDs changes were not significant as DHA concentrations were in the range of 0 μmol/L to 1 μmol/L. <b>4.</b> I<sub>to </sub>currents were gradually reduced with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, and its half-inhibited concentration was 5.3 μmol/L. The results showed that there were regional differences in the distribution of action potentials and I<sub>to </sub>in rat epicardial, mid-cardial and endocardial ventricular myocytes. APDs were prolonged and I<sub>to </sub>current densities were gradually reduced with the increase of DHA concentrations.</p> <p>Conclusion</p> <p>The anti-arrhythmia mechanisms of DHA are complex, however, the effects of DHA on action potentials and I<sub>to </sub>may be one of the important causes.</p

    Momentum matching and band-alignment type in van der Waals heterostructures: Interfacial effects and materials screening

    Full text link
    Momentum-matched type II van der Waals heterostructures (vdWHs) have been designed by assembling layered two-dimensional semiconductors (2DSs) with special band-structure combinations - that is, the valence band edge at the Gamma point (the Brillouin-zone center) for one 2DS and the conduction band edge at the Gamma point for the other [Ubrig et al., Nat. Mater. 19, 299 (2020)]. However, the band offset sizes, band-alignment types, and whether momentum matched or not, all are affected by the interfacial effects between the component 2DSs, such as the quasichemical-bonding (QB) interaction between layers and the electrical dipole moment formed around the vdW interface. Here, based on density-functional theory calculations, first we probe the interfacial effects (including different QBs for valence and conduction bands, interface dipole, and, the synergistic effects of these two aspects) on band-edge evolution in energy and valley (location in the Brillouin zone) and the resulting changes in band alignment and momentum matching for a typical vdWH of monolayer InSe and bilayer WS2, in which the band edges of subsystems satisfy the special band-structure combination for a momentum-matched type II vdWH. Then, based on the conclusions of the studied interfacial effects, we propose a practical screening method for robust momentum-matched type II vdWHs. This practical screening method can also be applied to other band alignment types. Our current study opens a way for practical screening and designing of vdWHs with robust momentum-matching and band alignment type

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link
    • …
    corecore