Docosahexaenoic acid has influence on action potentials and transient outward potassium currents of ventricular myocytes

Abstract

<p>Abstract</p> <p>Background</p> <p>There are many reports about the anti-arrhythmic effects of ω-3 polyunsaturated fatty acids, however, the mechanisms are still not completely delineated. The purpose of this study was to investigate the characteristics of action potentials and transient outward potassium currents (I<sub>to</sub>) of Sprague-Dawley rat ventricular myocytes and the effects of docosahexaenoic acid (DHA) on action potentials and I<sub>to</sub>.</p> <p>Methods</p> <p>The calcium-tolerant rat ventricular myocytes were isolated by enzyme digestion. Action potentials and I<sub>to </sub>of epicardial, mid-cardial and endocardial ventricular myocytes were recorded by whole-cell patch clamp technique.</p> <p>Results</p> <p><b>1.</b> Action potential durations (APDs) were prolonged from epicardial to endocardial ventricular myocytes (<it>P </it>< 0.05). <b>2.</b> I<sub>to </sub>current densities were decreased from epicardial to endocardial ventricular myocytes, which were 59.50 ± 15.99 pA/pF, 29.15 ± 5.53 pA/pF, and 12.29 ± 3.62 pA/pF, respectively at +70 mV test potential (<it>P </it>< 0.05). <b>3.</b> APDs were gradually prolonged with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, however, APDs changes were not significant as DHA concentrations were in the range of 0 μmol/L to 1 μmol/L. <b>4.</b> I<sub>to </sub>currents were gradually reduced with the increase of DHA concentrations from 1 μmol/L to 100 μmol/L, and its half-inhibited concentration was 5.3 μmol/L. The results showed that there were regional differences in the distribution of action potentials and I<sub>to </sub>in rat epicardial, mid-cardial and endocardial ventricular myocytes. APDs were prolonged and I<sub>to </sub>current densities were gradually reduced with the increase of DHA concentrations.</p> <p>Conclusion</p> <p>The anti-arrhythmia mechanisms of DHA are complex, however, the effects of DHA on action potentials and I<sub>to </sub>may be one of the important causes.</p

    Similar works