5,351 research outputs found

    Scandenolone from Cudrania tricuspidata fruit extract supresses the viability of breast cancer cells (MCF-7) in vitro and in vivo

    Get PDF
    Scandenolone, an isoflavone, has shown anti-cancer potential. In this study, we extracted scandenolone from Cudrania tricuspidata fruit and evaluated its anti-breast cancer effects as well as toxicity in cell and animal models. In cell model, scandenolone suppressed the breast cancer MCF-7 cells viability, ceased mitotic cell cycle, decreased mitochondrial membrane potential, up-regulated cleaved caspase-3 and promoted the phosphorylation of p53. Additionally, this isoflavone promoted cell apoptosis and induced a sustained activation of the phosphorylation of p38 and ERK, but not JNK and Akt. The effects were further verified in a human MCF-7 breast cancer xenograft model, where scandenolone efficiently suppressed the cancer growth and increased apoptotic cells in tumor tissue. However scandenolone has also shown certain toxicity to normal hepatocytes and breast epithelial cells. It could be concluded that scandenolone suppressed the growth of breast cancer cells, but its toxicity towards normal cells might limit its potential clinical use

    Observation of the Fractional Quantum Hall Effect in Graphene

    Full text link
    When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons linked to magnetic flux quanta form complex composite quasipartices, which are manifested in the quantization of the Hall conductivity as rational fractions of the conductance quantum. The recent experimental discovery of an anomalous integer quantum Hall effect in graphene has opened up a new avenue in the study of correlated 2D electronic systems, in which the interacting electron wavefunctions are those of massless chiral fermions. However, due to the prevailing disorder, graphene has thus far exhibited only weak signatures of correlated electron phenomena, despite concerted experimental efforts and intense theoretical interest. Here, we report the observation of the fractional quantum Hall effect in ultraclean suspended graphene, supporting the existence of strongly correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field. These newly discovered quantum states offer the opportunity to study a new state of matter of strongly correlated Dirac fermions in the presence of large magnetic fields

    Application advances of artificial intelligence algorithms in dynamics simulation of railway vehicle

    Get PDF
    The application examples and domestic and foreign literatures using artificial intelligence algorithm for railway vehicle system dynamics simulation were reviewed. The machine learning and deep learning algorithms commonly used in railway vehicle dynamics simulation were summarized, and the application classifications of the 2 algorithms in railway vehicle system dynamics modelling and simulation were concluded and interpreted. According to railway vehicle system dynamics modelling, dynamics performance prediction and dynamics performance optimization, the advantages and limitations of applying artificial intelligence algorithms in force-elements modelling and simulation, track irregularity prediction, running stability prediction, noise prediction, crosswind safety prediction, running safety prediction, suspension optimization, wheel-rail matching optimization, structure optimization, and active and semi-active control were discussed in detail. The problems of applications of artificial intelligence algorithms in railway dynamics simulation were lack of training samples, generalization ability and interpretability. The development directions and key research contents of the interdisciplinary research between artificial intelligence and vehicle system dynamics were given. Research result shows that the hybrid modelling theory combining classical mechanics and artificial intelligence algorithms can be as a key research direction in the future. There is great potential to use the artificial intelligence algorithms to solve the random uncertainty in stochastic dynamics and improve the performance of stochastic dynamics. The artificial intelligence algorithms combinated with optimization algorithms can exploit their advantages in the dynamics performance optimization.

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    A novel multivariate STeady-state index during general ANesthesia (STAN)

    Get PDF
    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy, Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio

    Confucian Principles: A Study of Chinese Americans’ Interpersonal Relationships in Selected Children’s Picturebooks

    Get PDF
    [[abstract]]There has not been enough critical analysis of children’s literature by and about Chinese Americans, especially when compared to other minority groups in the United States. In particular, Chinese American historical books lack extensive analysis. It is important to reflect cultural accuracy in literature and to help children develop clear concepts of self and others by providing precise cultural and physical characteristics of people. While cultural authenticity allows children the opportunity to see a reflection of real experiences within a book instead of seeing stereotypes or misrepresentations, obtaining correct information about a certain time period can help children to see images of immigration accurately represented in literature. Using the Confucian delineation of interpersonal relationships as the major criterion of cultural authenticity, this article examines three currently available children’s picturebooks set in the historical period between 1848 and 1885. In addition to exploring how Chinese Americans’ interpersonal relationships are portrayed in these children’s historical books, this article argues for more proactive inclusion of the diversity in selection of picturebooks.[[notice]]補正完

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Resonances in J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=179030+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=27030+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex
    corecore