40 research outputs found

    A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome.

    Get PDF
    A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa

    Brassinosteroids Inhibit Autotropic Root Straightening by Modifying Filamentous-Actin Organization and Dynamics

    Get PDF
    When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical roots were oriented horizontally. Moreover, the effects of the two compounds on root growth directionality were more striking on a slowly-rotating twodimensional clinostat. Both compounds inhibited autotropism, a process in which the root straightened after the initial gravistimulus was withdrawn by clinorotation. Although eBL reduced F-actin density in chemically-fixed Z. mays roots, the impact was not as strong as that of LatB. Modification of F-actin organization after treatment with both compounds was also observed in living roots of barrel medic (Medicago truncatula) seedlings expressing genetically encoded F-actin reporters. Like in fixed Z. mays roots, eBL effects on F-actin in living M. truncatula roots were modest compared with those of LatB. Furthermore, live cell imaging revealed a decrease in global F-actin dynamics in hypocotyls of etiolated M. truncatula seedlings treated with eBL compared to controls. Collectively, our data indicate that eBL-and LatB-induced enhancement of root gravitropism can be explained by inhibited autotropic root straightening, and that eBL affects this process, in part, by modifying F-actin organization and dynamics

    Patterns of human social contact and contact with animals in Shanghai, China

    Get PDF
    East Asia is as a principal hotspot for emerging zoonotic infections. Understanding the likely pathways for their emergence and spread requires knowledge on human-human and human-animal contacts, but such studies are rare. We used self-completed and interviewer-completed contact diaries to quantify patterns of these contacts for 965 individuals in 2017/2018 in a high-income densely-populated area of China, Shanghai City. Interviewer-completed diaries recorded more social contacts (19.3 vs. 18.0) and longer social contact duration (35.0 vs. 29.1 hours) than self-reporting. Strong age-assortativity was observed in all age groups especially among young participants (aged 7–20) and middle aged participants (25–55 years). 17.7% of participants reported touching animals (15.3% (pets), 0.0% (poultry) and 0.1% (livestock)). Human-human contact was very frequent but contact with animals (especially poultry) was rare although associated with frequent human-human contact. Hence, this densely populated area is more likely to act as an accelerator for human-human spread but less likely to be at the source of a zoonosis outbreak. We also propose that telephone interview at the end of reporting day is a potential improvement of the design of future contact surveys

    The FOXK1-CCDC43 Axis Promotes the Invasion and Metastasis of Colorectal Cancer Cells

    Get PDF
    Background/Aims: The CCDC43 gene is conserved in human, rhesus monkey, mouse and zebrafish. Bioinformatics studies have demonstrated the abnormal expression of CCDC43 gene in colorectal cancer (CRC). However, the role and molecular mechanism of CCDC43 in CRC remain unknown. Methods: The functional role of CCDC43 and FOXK1 in epithelial-mesenchymal transition (EMT) was determined using immunohistochemistry, flow cytometry, western blot, EdU incorporation, luciferase, chromatin Immunoprecipitation (ChIP) and cell invasion assays. Results: The CCDC43 gene was overexpressed in human CRC. High expression of CCDC43 protein was associated with tumor progression and poor prognosis in patients with CRC. Moreover, the induction of EMT by CCDC43 occurred through TGF-β signaling. Furthermore, a positive correlation between the expression patterns of CCDC43 and FOXK1 was observed in CRC cells. Promoter assays demonstrated that FOXK1 directly bound and activated the human CCDC43 gene promoter. In addition, CCDC43 was necessary for FOXK1- mediated EMT and metastasis in vitro and vivo. Taken together, this work identified that CCDC43 promoted EMT and was a direct transcriptional target of FOXK1 in CRC cells. Conclusion: FOXK1-CCDC43 axis might be helpful to develop the drugs for the treatment of CRC

    Systematic analysis of the necroptosis index in pan-cancer and classification in discriminating the prognosis and immunotherapy responses of 1716 glioma patients

    Get PDF
    Necroptosis is a programmed form of necrotic cell death that serves as a host gatekeeper for defense against invasion by certain pathogens. Previous studies have uncovered the essential role of necroptosis in tumor progression and implied the potential for novel therapies targeting necroptosis. However, no comprehensive analysis of multi-omics data has been conducted to better understand the relationship between necroptosis and tumor. We developed the necroptosis index (NI) to uncover the effect of necroptosis in most cancers. NI not only correlated with clinical characteristics of multiple tumors, but also could influence drug sensitivity in glioma. Based on necroptosis-related differentially expressed genes, the consensus clustering was used to classify glioma patients into two NI subgroups. Then, we revealed NI subgroup I were more sensitive to immunotherapy, particularly anti-PD1 therapy. This new NI-based classification may have prospective predictive factors for prognosis and guide physicians in prioritizing immunotherapy for potential responders

    Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides

    Full text link
    High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO2 planes of their insulating parent compounds. While hole-doping quickly induces metallic behavior and superconductivity in many cuprates, electron-doping alone is insufficient in materials such as R2CuO4 (R is Nd, Pr, La, Ce, etc.), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO2 planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.Comment: 23 pages, 3 figures, accepted for publication in Nature Material

    Brassinosteroids Inhibit Autotropic Root Straightening by Modifying Filamentous-Actin Organization and Dynamics

    Get PDF
    When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical roots were oriented horizontally. Moreover, the effects of the two compounds on root growth directionality were more striking on a slowly-rotating twodimensional clinostat. Both compounds inhibited autotropism, a process in which the root straightened after the initial gravistimulus was withdrawn by clinorotation. Although eBL reduced F-actin density in chemically-fixed Z. mays roots, the impact was not as strong as that of LatB. Modification of F-actin organization after treatment with both compounds was also observed in living roots of barrel medic (Medicago truncatula) seedlings expressing genetically encoded F-actin reporters. Like in fixed Z. mays roots, eBL effects on F-actin in living M. truncatula roots were modest compared with those of LatB. Furthermore, live cell imaging revealed a decrease in global F-actin dynamics in hypocotyls of etiolated M. truncatula seedlings treated with eBL compared to controls. Collectively, our data indicate that eBL-and LatB-induced enhancement of root gravitropism can be explained by inhibited autotropic root straightening, and that eBL affects this process, in part, by modifying F-actin organization and dynamics

    Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters

    No full text
    Due to the unique structures, photoelectric properties, good catalytic activity, and broad potential applications, gold nanoclusters (Aun) received extensive attention in catalysis, bioengineering, environmental engineering, and so on. In the present work, the structures and properties of Aun adsorbed on the MgO(001) and TiO2(101) surfaces were investigated by density functional theory. The results showed that the catalytic properties of Aun will be enhanced when Aun is adsorbed on certain supports. Because the difference of the outer electronic structure of metals in supports, the direction of the charge transfer was different, thus inducing the different charge distribution on Aun. When Aun was adsorbed on MgO(001) [TiO2(101)] surface, Aun will have negative [positive] charges and thus higher catalytic activity in oxidation [reduction] reaction. The variation of surface charges caused by the support makes Aun possess different catalytic activity in different systems. Moreover, the electronic structure of the support will make an obvious influence on the s and d density of states of Aun, which should be the intrinsic reason that induces the variations of its structure and properties. These results should be an important theoretical reference for designing Aun as the photocatalyst applied to the different oxidation and reduction reactions

    Research progress on factors affecting oxygen corrosion and countermeasures in oilfield development

    No full text
    Water injection, air injection, air foam injection, and in-situ combustion technology are used step by step in the later period of oilfield. Oxygen corrosion caused by different development methods has become a problem that could not be ignored. In this paper, the mechanism of oxygen corrosion, the influencing factors of oxygen corrosion and the new progress of oxygen corrosion countermeasures in recent years are systematically analyzed. Anticorrosion methods for different development modes are put forward. The direction of further research on oxygen corrosion in oilfield development is proposed: â—‹1Prediction and control of corrosion in oxygen environment need to be further studied to better guide corrosion protection in high temperature injection and production of oil and gas wells. â—‹2The research of anticorrosive coating materials and corrosion inhibitor technology needs to be further developed in the direction of safety and environment-friendly
    corecore