1,883 research outputs found

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    Low-diffusivity scalar transport using a WENO scheme and dual meshing

    Get PDF
    Interfacial mass transfer of low-diffusive substances in an unsteady flow environment is marked by a very thin boundary layer at the interface and other regions with steep concentration gradients. A numerical scheme capable of resolving accurately most details of this process is presented. In this scheme, the fourth-order accurate WENO method developed by Liu et al. (1994) was implemented on a non-uniform staggered mesh to discretize the scalar convection while for the scalar diffusion a fourth-order accurate central discretization was employed. The discretization of the scalar convection-diffusion equation was combined with a fourth-order Navier-Stokes solver which solves the incompressible flow. A dual meshing strategy was employed, in which the scalar was solved on a finer mesh than the incompressible flow. The solver was tested by performing a number of two-dimensional simulations of an unstably stratified flow with low diffusivity scalar transport. The unstable stratification led to buoyant convection which was modelled using a Boussinesq approximation with a linear relationship between flow temperature and density. The order of accuracy for one-dimensional scalar transport on a stretched and uniform grid was also tested. The results show that for the method presented above a relatively coarse mesh is sufficient to accurately describe the fluid flow, while the use of a refined mesh for the low-diffusive scalars is found to be beneficial in order to obtain a highly accurate resolution with negligible numerical diffusion

    Effects of Interplanetary Dust on the LISA drag-free Constellation

    Full text link
    The analysis of non-radiative sources of static or time-dependent gravitational fields in the Solar System is crucial to accurately estimate the free-fall orbits of the LISA space mission. In particular, we take into account the gravitational effects of Interplanetary Dust (ID) on the spacecraft trajectories. The perturbing gravitational field has been calculated for some ID density distributions that fit the observed zodiacal light. Then we integrated the Gauss planetary equations to get the deviations from the LISA keplerian orbits around the Sun. This analysis can be eventually extended to Local Dark Matter (LDM), as gravitational fields are expected to be similar for ID and LDM distributions. Under some strong assumptions on the displacement noise at very low frequency, the Doppler data collected during the whole LISA mission could provide upper limits on ID and LDM densities.Comment: 11 pages, 6 figures, to be published on the special issue of "Celestial Mechanics and Dynamical Astronomy" on the CELMEC V conferenc

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Search for Invisible Decays of η\eta and η\eta^\prime in J/ψϕηJ/\psi \to \phi\eta and ϕη\phi \eta^\prime

    Full text link
    Using a data sample of 58×10658\times 10^6 J/ψJ/\psi decays collected with the BES II detector at the BEPC, searches for invisible decays of η\eta and η\eta^\prime in J/ψJ/\psi to ϕη\phi\eta and ϕη\phi\eta^\prime are performed. The ϕ\phi signals, which are reconstructed in K+KK^+K^- final states, are used to tag the η\eta and η\eta^\prime decays. No signals are found for the invisible decays of either η\eta or η\eta^\prime, and upper limits at the 90% confidence level are determined to be 1.65×1031.65 \times 10^{-3} for the ratio B(ηinvisible)B(ηγγ)\frac{B(\eta\to \text{invisible})}{B(\eta\to\gamma\gamma)} and 6.69×1026.69\times 10^{-2} for B(ηinvisible)B(ηγγ)\frac{B(\eta^\prime\to \text{invisible})}{B(\eta^\prime\to\gamma\gamma)}. These are the first searches for η\eta and η\eta^\prime decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo

    Self-assembly of quantum dots: effect of neighbor islands on the wetting in coherent Stranski-Krastanov growth

    Full text link
    The wetting of the homogeneously strained wetting layer by dislocation-free three-dimensional islands belonging to an array has been studied. The array has been simulated as a chain of islands in 1+1 dimensions. It is found that the wetting depends on the density of the array, the size distribution and the shape of the neighbor islands. Implications for the self-assembly of quantum dots grown in the coherent Stranski-Krastanov mode are discussed.Comment: 4 pages, 6 figures, accepted version, minor change

    Semiparametric regression analysis for composite endpoints subject to componentwise censoring

    Get PDF
    Composite endpoints with censored data are commonly used as study outcomes in clinical trials. For example, progression-free survival is a widely used composite endpoint, with disease progression and death as the two components. Progression-free survival time is often defined as the time from randomization to the earlier occurrence of disease progression or death from any cause. The censoring times of the two components could be different for patients not experiencing the endpoint event. Conventional approaches, such as taking the minimum of the censoring times of the two components as the censoring time for progression-free survival time, may suffer from efficiency loss and could produce biased estimates of the treatment effect. We propose a new likelihood-based approach that decomposes the endpoints and models both the progression-free survival time and the time from disease progression to death. The censoring times for different components are distinguished. The approach makes full use of available information and provides a direct and improved estimate of the treatment effect on progression-free survival time. Simulations demonstrate that the proposed method outperforms several other approaches and is robust against various model misspecifications. An application to a prostate cancer clinical trial is provided

    Fission Hindrance in hot 216Th: Evaporation Residue Measurements

    Full text link
    The fusion evaporation-residue cross section for 32S+184W has been measured at beam energies of E_beam = 165, 174, 185, 196, 205, 215, 225, 236, 246,and 257 MeV using the ATLAS Fragment Mass Analyzer. The data are compared with Statistical Model calculations and it is found that a nuclear dissipation strength, which increases with excitation energy, is required to reproduce the excitation function. A comparison with previously published data show that the dissipation strength depends strongly on the shell structure of the nuclear system.Comment: 15 pages 9 figure
    corecore