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SUMMARY

Composite endpoints with censored data are commonly used as study outcomes in clinical 
trials. For example, progression-free survival is a widely used composite endpoint, with disease 
progression and death as the two components. Progression-free survival time is often defined as 
the time from randomization to the earlier occurrence of disease progression or death from any 
cause. The censoring times of the two components could be different for patients not experiencing 
the endpoint event. Conventional approaches, such as taking the minimum of the censoring times 
of the two components as the censoring time for progression-free survival time, may suffer from 
efficiency loss and could produce biased estimates of the treatment effect. We propose a new 
likelihood-based approach that decomposes the endpoints and models both the progression-free 
survival time and the time from disease progression to death. The censoring times for different 
components are distinguished. The approach makes full use of available information and pro-
vides a direct and improved estimate of the treatment effect on progression-free survival time. 
Simulations demonstrate that the proposed method outperforms several other approaches and is 
robust against various model misspecifications. An application to a prostate cancer clinical trial 
is provided.
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1. INTRODUCTION

Composite endpoints, which consist of multiple component endpoints, are commonly used
in clinical trials. Experiencing any of the events specified by the components is considered
experiencing the composite endpoint. In particular, in oncology trials, progression-free survival
is a composite endpoint with disease progression and death as the two components, and is defined
as the time from randomization to the occurrence of disease progression or death from any cause.
One example is the bone metastasis-free survival, with bone metastasis progression and death
being the two components. Other examples of composite endpoints include cardiovascular death
or hospitalization for heart failure, and major adverse cardiac events.

The censoring times for the individual components of a composite endpoint may not be the
same. Using progression-free survival as an example, the two components, disease progression
status and survival status, are often assessed using different schedules and methods, and are
potentially subject to different censoring mechanisms, so the censoring times of the two com-
ponents could differ for patients not experiencing the endpoint event. For example, assessment
of objective disease progression requires radiological imaging evaluations. The progression-free
status can only be confirmed up to the last evaluation, while the survival status can be assessed
more frequently and thus confirmed up to a later time-point. Componentwise censoring can also
occur when we retrieve information about survival status from public records for subjects who
withdraw from clinical trials; for example, see the U.S. Food and Drug Administration’s guidance
document on data retention (FDA, 2008). However, not all death records are retrievable. When
these events are included in a progression-free survival analysis, it is not clear how the censoring
time should be defined for early-withdrawal subjects.

Componentwise censoring poses major challenges in the analysis of composite endpoints.
Some conventional approaches include taking the minimum or the maximum of the censoring
times of the two components. For example, in the U.S. Food and Drug Administration’s guidance
document on oncology clinical trials (FDA, 2007), it is recommended to censor progression-free
survival time at the last assessment that determined a lack of progression. Death after two or
more missed visits should be censored at the last assessment date before the missed visits. In
practice, other methods may be used, such as censoring at the maximum censoring time for all
component events, or treating withdrawal or change of therapy prior to disease progression as
events (EMA, 2008). However, these methods either do not take advantage of the full information
on all components, or impose assumptions that are hard to verify. As a result, conventional
approaches may suffer from efficiency loss and could produce biased parameter estimates.

Composite endpoints could be handled by the method of Wei et al. (1989), where disease pro-
gression and death are analysed separately and a global treatment effect estimated by combining
estimates from individual components. But this global treatment effect does not necessarily corre-
spond to the effect on the composite endpoint. Wu & Cook (2012) proposed using copulas to link
marginal distributions of the individual component endpoints with a proportional hazards struc-
ture. The treatment effect on the composite endpoint was not modelled directly but instead derived
from the joint distribution of two individual components with a complicated form; therefore, it
is not easy or intuitive to interpret the results. Quan et al. (2007) proposed a likelihood-based
method for the analysis of a composite endpoint with missing data in its components. In their
approach, instead of directly analysing the composite endpoint, the probabilities of all possible
study outcomes were derived using all available data, and then the event rate was constructed for
the composite endpoint based on these probabilities. Li & Zhang (2015) developed a parametric
multistate model assuming a Weibull distribution for each possible transition from one state to
another. None of the aforementioned methods considered componentwise censoring.



In a 2015 unpublished paper, Y. Y Chen, C. Ke and J. Wang addressed different censoring
schemes for component events through imputation. They proposed three multiple imputation-
based methods: imputing the event time marginally using Kaplan–Meier estimates; imputing
based on a Cox proportional hazards model; and imputing the event time of one component event
based on a Kaplan–Meier estimate conditional on the other event. The risk set for sampling may
become small towards the tail, leading to large variation. Furthermore, the inference procedure
relies on simulation and can be computationally intensive. Boruvka & Cook (2016) developed
sieve estimation in a Markov illness-death process under componentwise censoring, using a
Cox-type proportional intensity model for each possible transition and assuming the baseline
cumulative intensity functions to have piecewise parametric forms.

In this article, we develop a new likelihood-based approach to handle different censoring
times for the individual components in a composite endpoint. The proposed model decomposes
the endpoints and models both the progression-free survival time and the time from disease
progression to death. The likelihood is derived, and the parameters including the treatment effect
on progression-free survival time are estimated by maximizing the likelihood. The censoring
times for different components are distinct and linked to individual components. Therefore, this
approach makes full use of the available information and improves the estimate of the treatment
effect on progression-free survival time. Furthermore, the proposed method provides insights
into the covariate effects on the time from disease progression to death among patients who
experience disease progression before death.

2. MODELS

Let Ts denote the time from randomization to disease progression and Td the time from
randomization to death. The composite endpoint progression-free survival time is defined as
Y = min(Ts, Td), i.e., the time to the first occurrence of disease progression or death. Our main
interest is to study the treatment effect on this composite endpoint in the presence of right-
censored data. We propose to model Y given X directly, which includes both treatment and
baseline covariates, via the proportional hazards model

λ(t | X ) = λ(t) exp(X Tβ), (1)

where λ(t) is the baseline hazard function and β represents the effect of X on the log hazard rate
of Y . Model (1) explicitly gives treatment effects on composite endpoint and survival profiles. We
propose to model the baseline cumulative hazard�(t) = ∫ t

0 λ(s) ds parametrically. For example,
we assume that �(t) = (t/α)θ , which corresponds to a Weibull distribution. Hereafter we write
�(t;α, θ) and λ(t;α, θ) to emphasize that the baseline cumulative hazard and baseline hazard
functions for Y depend on parameters α and θ .

Since death is always the end observation for any subject, our second model will involve the
conditional distribution of G ≡ Td − Y given X and Y ; that is, we model the distribution of the
time from the occurrence of the composite event to death. Clearly, if a patient never experiences
disease progression, Td will be the same as Y ; otherwise, Y = Ts is strictly less than Td . This
implies that G has a positive probability of being degenerate at zero. Therefore, we propose to
model G given X and Y using a zero-inflated hazard model

pr(G > t | X , Y ) = {1 − q(X , Y ; ξ)} exp
[−A(t) exp{(X , Y )Tγ }], t � 0, (2)



where q(X , Y ; ξ) = pr(G = 0 | X , Y ; ξ) and A(t) is the baseline cumulative hazard function
for G in the subpopulation where G > 0. Although we assume a parametric form for λ(t) in
model (1), we leave A(t) in (2) fully nonparametric, since we are interested in a model for Y but
are willing to leave the model for G as nonparametric as possible. We model q(X , Y ; ξ) by the
logistic regression model

q(X , Y ; ξ) = exp{ξ0 + (X , Y )Tξ1}
1 + exp{ξ0 + (X , Y )Tξ1} , (3)

so the unknown parameters are ψ ≡ (η, A), where η = (α, θ ,β, ξ , γ ) are the finite-dimensional
parameters.

Define Cs and Cd to be the censoring times for Ts and Td , respectively. Typically a study
design ensures that Cs � Cd . Therefore, the observed data contain O ≡ {Ỹ , Z̃ ,�1,�2,�3, X },
where Ỹ = min(Ts, Td , Cs), Z̃ = min(Td , Cd), �1 = I (Ts � Cs and Ts < Td), �2 =
I (Ỹ = Td) and �3 = I (Td � Cd), with I (·) denoting the indicator function. Define
fY (t | X ;α, θ ,β) = λ(t;α, θ) exp(X Tβ) exp{−�(t;α, θ) exp(X Tβ)} and SY (t | X ;α, θ ,β) =
exp{−�(t;α, θ) exp(X Tβ)} to be the density function and survival function of Y given X , respec-
tively. Additionally, define fG(t | X , t1; A, γ ) = a(t) exp{(X , t1)Tγ } exp[−A(t) exp{(X , t1)Tγ }]
and SG(t | X , t1; A, γ ) = exp[−A(t) exp{(X , t1)Tγ }] to be respectively the density function and
survival function of G given Y = t1 and X in the subpopulation where G > 0. Here a(·) is the
first derivative of A(·).

Assume conditional independent censoring, i.e., that the censoring times (Cs, Cd) are inde-
pendent of (Ts, Td) given X . We next derive the likelihood contribution from a random sample
O under five possible scenarios, (a)–(e).

Scenario (a): �1 = �3 = 1. Both Y = Ỹ and G = Z̃ − Ỹ are observed. Therefore the
likelihood contribution is W1(O;ψ) = fY (Ỹ | X ;α, θ ,β){1−q(X , Ỹ ; ξ)} fG(Z̃ − Ỹ | X , Ỹ ; A, γ ).

Scenario (b): �2 = �3 = 1. We observe death at Ỹ = Z̃ , but no disease progression was
observed before Ỹ . Therefore Y = Ỹ and G = 0. The likelihood contribution is W2(O;ψ) =
q(X , Ỹ ; ξ)fY (Ỹ | X ;α, θ ,β).

Scenario (c):�1 = �2 = 0 and�3 = 1. The patient was observed to stop disease progression
assessment or to drop out at Ỹ without disease progression, but later died at Z̃ . Therefore Y = Z̃
with probability q(X , Z̃ ; ξ) and Y ∈ (Ỹ , Z̃) with probability 1 − q(X , Ỹ ; ξ). The likelihood
contribution is

W3(O;ψ) = q(X , Z̃ ; ξ)fY (Z̃ | X ;α, θ ,β)

+
∫ Z̃−

Ỹ
fY (t | X ;α, θ ,β){1 − q(X , t; ξ)} fG(Z̃ − t | X , t; A, γ ) dt.

Scenario (d):�1 = 1 and�3 = 0.We observe Y = Ỹ but G is censored at Z̃−Ỹ . The likelihood
contribution is W4(O;ψ) = {1 − q(X , Ỹ ; ξ)} fY (Ỹ | X ;α, θ ,β)SG(Z̃ − Ỹ | X , Ỹ ; A, γ ).

Scenario (e): �1 = �2 = �3 = 0. In this case, Ỹ = Cs, Z̃ = Cd , and both Y and Td are
censored. The likelihood contribution is

W5(O;ψ) =
∫ ∞

Z̃
q(X , t; ξ)fY (t | X ;α, θ ,β) dt

+
∫ ∞

Z̃

∫ t2

Ỹ
{1 − q(X , t1; ξ)} fY (t1 | X ;α, θ ,β)fG(t2 − t1 | X , t1; A, γ ) dt1 dt2,



where the first term corresponds to the case where Y = Td and G = 0, and the second term
corresponds to the case where Y = Ts and G > 0. One can show that

W5(O;ψ) = SY (Z̃ | X ;α, θ ,β)

+
∫ Z̃

Ỹ
{1 − q(X , s1; ξ)} fY (s1 | X ;α, θ ,β)SG(Z̃ − s1 | X , s1; A, γ ) ds1.

Define I1(O) = I (�1 = �3 = 1), I2(O) = I (�2 = �3 = 1), I3(O) = I (�1 = �2 = 0,
�3 = 1), I4(O) = I (�1 = 1,�3 = 0) and I5(O) = I (�1 = �2 = �3 = 0). The like-
lihood function of ψ based on n independent observations {Oi ≡ (Ỹi, Z̃i,�1i,�2i,�3i, Xi)}
(i = 1, . . . , n) is Ln(ψ) = ∏n

i=1
∏5

j=1 Wj(Oi;ψ)Ij(Oi). Naturally, one would maximize Ln(ψ)

to obtain an estimator of ψ . However, for a function A with fixed values at the observed gap
times, we can always let a(Z̃i − Ỹi) go to ∞ for subject i with I1(Oi) = 1. Therefore, we apply
nonparametric maximum likelihood estimation by letting the estimator be a step function with
jumps at the observed values for G. Suppose that 0 < τ1 < · · · < τm are the m distinct observed
gap times G. Using the nonparametric likelihood approach, A(t) = ∑

j:τj�t A{τj}, where A{t} is
the jump size of A(·) at t. For ease of notation, we denote the resulting nonparametric likelihood
function by Ln(ψ) and the corresponding nonparametric loglikelihood by ln(ψ).

We show how to calculate the integrals in W3(O;ψ) and W5(O;ψ) by using nonparametric
maximum likelihood. Under scenario (c), the second term of the likelihood contribution based
on an observation O is∑

j:τj<Z̃−Ỹ

{1 − q(X , Z̃ − τj, X ; ξ)}A{τj}
× exp

{
(X , Z̃ − τj)

Tγ
}

exp
[−A(τj) exp{(X , Z̃ − τj)

Tγ }]
× λ(Z̃ − τj;α, θ) exp(X Tβ) exp

{−�(Z̃ − τj;α, θ) exp(X Tβ)
}
.

We now turn our attention to scenario (e). Define τm+1 = ∞ and 0 = g0 < g1 < · · · < gk �
gk+1 = Z̃ − Ỹ < τk+1, where gj = τj (j = 1, . . . , k). We can show that the second term of the
likelihood contribution in W5(O;ψ) can be written as

∫ Z̃

Ỹ
{1 − q(X , s1; ξ)} fY (s1 | X ;α, θ ,β)SG(Z̃ − s1 | X , s1; A, γ ) ds1

=
k∑

j=0

∫ Z̃−gj

Z̃−gj+1

{1 − q(s1, X ; ξ)} fY (s1 | X ;α, θ ,β)SG(τj | X , s1; A, γ ) ds1.

We use Gauss–Legendre quadrature to approximate the above integrals. In our experience, the
Gauss–Legendre quadrature is reasonably accurate with ten abscissa points. To maximize Ln(ψ),
we use the quasi-Newton algorithm (Press et al., 1992). The resulting nonparametric maximum
likelihood estimators of ψ are denoted by ψ̂n ≡ (η̂n, Ân).

3. ASYMPTOTIC PROPERTIES

In this section, we establish the asymptotic properties of the nonparametric maximum likeli-
hood estimators ψ̂n. Besides the conditional independent censoring assumption described in the
previous section, we make the following assumptions.



Assumption 1. The covariate X has bounded support. If cT
1X = c0 with probability 1, then

c0 = 0 and c1 = 0.

Assumption 2. There exists some positive constant δ1 such that pr(Cs � τ | X ) = pr(Cs =
τ | X ) � δ1 almost surely, where τ is a constant denoting the end of the study. Additionally, with
probability 1, Cs � Cd .

Assumption 3. The true parameter values of (α, θ ,β, ξ , γ ), denoted byη0 ≡ (α0, θ0,β0, ξ0, γ0),
lie in the interior of a known compact set in the domain of η.

Assumption 4. The true baseline cumulative hazard function A0 is strictly increasing and
continuously differentiable in [0, τ ].

Assumption 1 is the usual condition for a design matrix in regression settings to ensure model
identifiability. Assumptions 3 and 4 and the first part of Assumption 2 are standard regularity and
technical conditions for a regression model with right-censored data. Assumption 2 also implies
pr(Cd � τ | X ) = pr(Cd = τ | X ) � δ1. Assumptions 1 and 4 imply that pr(Td > Ts | X ) � δ2
for some positive constant δ2; hence some patients experience disease progression before death
and so we can observe the gap time G with a positive probability.

We show in the Supplementary Material that the unknown parameters η and A(t) (t ∈ [0, τ ])
are identifiable. We next establish consistency and asymptotic normality of the proposed
nonparametric maximum likelihood estimators in the following two theorems.

THEOREM 1. Under the conditional independent censoring assumption and Assumptions 1–4,
with probability tending to 1, ‖η̂n − η0‖ + supt∈[0,τ ] |Ân(t) − A0(t)| → 0, where ‖ · ‖ is the
Euclidean norm.

THEOREM 2. Under the conditional independent censoring assumption and Assumptions 1–4,
n1/2(η̂n − η0, Ân − A0) → G in distribution, where G is a continuous zero-mean Gaussian
process in l∞(H) and H = {(h1, h2) : h1 ∈ R

3p+5, h2(·) is a function on [0, τ ]; ‖h1‖ � 1,
|h2(t)|V [0,τ ] � 1}. Here l∞(H) denotes the space of all bounded linear functionals on H and
|h|V [0,τ ] denotes the total variation of h in [0, τ ]. Furthermore, the limiting covariance matrix of
n1/2(η̂n − η0) attains the semiparametric efficiency bound.

Theorem 1 states the consistency of the nonparametric maximum likelihood estimators. The
basic idea in the proof of Theorem 1 is as follows. We first show by contradiction that Ân(τ )

cannot diverge. Once the boundedness of Ân(τ ) is established, a subsequence of Ân can be found
that converges pointwise to a bounded monotone function A∗ in [0, τ ], and the same sequence
of η̂n converges to some η∗. We construct a step function Ān with jumps at the observed gap
times converging to A0. Finally, we prove that the Kullback–Leibler information between the
true density and the density indexed by (η∗, A∗) is nonpositive. Consistency will then follow
from the identifiability result. The details are given in the Appendix.

Theorem 2 implies that for any (h1, h2) ∈ R
3p+5 × l∞(H), n1/2(η̂n − η0)

Th1 +
n1/2

∫ τ
0 h2(t)(dÂn − dA0) is asymptotically normal with mean zero. This result can be derived

by verifying the four conditions in Theorem 3.3.1 of van der Vaart & Wellner (1996). To esti-
mate the covariance matrix of (η̂n, Ân), we view the nonparametric likelihood as a parametric
likelihood with η and the jump sizes of A at the observed gap times as parameters. Following
the arguments in Theorem 2 of Parner (1998), we can then estimate the asymptotic covariance
matrix by inverting the observed information matrix according to parametric likelihood theory.
The proof of Theorem 2 is given in the Appendix.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy013#supplementary-data


Table 1. Summary statistics for nonparametric maximum likelihood estimates based 
on 1000 replicates with n = 300

Parameter True Bias (×100) SE (×100) SEE (×100) CP (×100)

α 1 2·7 12·8 12·6 95
θ 1 1·7 6·4 6·5 94
β1 1 2·3 10·7 10·3 94
β2 −1 0·1 17·6 17·8 96
ξ0 0 6·7 30·5 29·1 94
ξ1 0·5 0·4 26·5 25·6 95
ξ2 0·5 7·3 54·0 49·6 95
γ1 1 −1·1 28·3 27·8 95
γ2 0·5 0·0 48·4 46·5 95
A(0·20) 0·2 0·9 8·7 8·5 96
A(0·25) 0·25 1·4 10·3 10·1 95
A(0·30) 0·3 1·9 12·0 11·6 94
A(0·35) 0·35 2·1 13·2 13·0 95

SE, sample standard deviation of the estimates; SEE, average of the standard error estimates; CP, coverage
probability of the 95% confidence interval based on a normal approximation.

4. SIMULATION STUDIES

We conducted extensive simulation studies to examine the performance of the proposed non-
parametric maximum likelihood estimators under joint modelling of the composite endpoint Y
and the gap time G between Y and Td . We first generate two covariates, X1 ∼ N (0, 1) and
X2 ∼ Ber(1/2), and then generate the composite endpoint Y from the model �(t | X ) =
t exp(β1X1 + β2X2). This implies that the true values of α and θ in the Weibull distribution
both equal 1. We next determine whether the composite endpoint is Ts or Td based on a logistic
regression model pr(G = 0 | X1, X2; ξ) = exp(ξ0 + ξ1X1 + ξ2X2)/{1 + exp(ξ0 + ξ1X1 + ξ2X2)}.
If G = 0, then the composite endpoint is Td . Otherwise, we generate G based on the model
A(t | X1, X2; γ ) = t exp(γ1X1 + γ2X2). The true value of the cumulative hazard function for
G given G > 0 is A(t) = t. Then Td = Ts + G. Finally, we generate the censoring time for
Ts, denoted by Cs, from an exponential distribution with mean 0·5; then Cd = Cs + u, where u
follows an exponential distribution with mean 2.

We set the true regression parameter values to be (β1,β2, ξ0, ξ1, ξ2, γ1, γ2) =
(1, −1, 0, 0·5, 0·5, 1, 0·5).The relative frequencies of the five scenarios (a)–(e) are 8·84%, 16·87%,
29·80%, 1·91% and 42·59%, respectively. We estimate the covariance matrix of (η̂n, Ân) by
inverting the observed Fisher information matrix, i.e., the negative second derivatives of the
loglikelihood with respect to η and the jump sizes of A(·), evaluated at (η̂n, Ân). Table 1 shows
that the estimators have low bias and that the standard errors reflect the actual variation of the
estimates. The coverages of the 95% confidence intervals are close to the nominal level.

We also used four naive methods to analyse the composite endpoint. All treat Y as the survival
endpoint subject to right censoring. Denote the censoring time by C and the censoring indicator
by � = I (Y � C). In scenarios (a), (b) and (d), we can directly observe Y = Ỹ and therefore
� = 1. In scenario (c) we do not observe the composite endpoint but we know that Y belongs to
(Ỹ , Z̃]. In scenario (e), the composite endpoint is censored but it is not clear whether the censoring
time is Ỹ or Z̃ or some other time-points between Ỹ and Z̃ . Table 2 provides the definitions of
min(Y , C) and � for the naive methods in scenarios (c) and (e).

Naive methods (i) and (iii) assume that under scenario (c) Y is censored at Ỹ , but they ignore
the information that Y cannot exceed Z̃ . Naive methods (ii) and (iv), under scenario (c), assume



Table 2. Definition of min(Y , C) and � for the four naive methods
Naive method Scenario (c) Scenario (e)

(i) C = Ỹ ,� = 0 C = Ỹ ,� = 0
(ii) Y = Z̃ ,� = 1 C = Ỹ ,� = 0
(iii) C = Ỹ ,� = 0 C = Z̃ ,� = 0
(iv) Y = Z̃ ,� = 1 C = Z̃ ,� = 0

that time to death is the composite endpoint and ignore the possibility that disease progression
occurs in the interval (Ỹ , Z̃). In scenario (e), the censoring time C ∈ [Ỹ , Z̃] is unknown and is
imputed with either Ỹ or Z̃ . FDA guidance recommends censoring patients without an event at
the last adequate disease assessment date and to censor at the last disease assessment if death
occurs after more than one missed disease assessment. This is similar to naive method (iii).

For all four methods, we fit the parametric Weibull proportional hazards model in order to have
a fair comparison, since the true composite endpoint was generated from a Weibull distribution.
We consider simulation settings similar to the above, but also incorporate Y in the model of
pr(G = 0 | X1, X2, Y ; ξ) and A(t | X1, X2, Y ; γ ). The corresponding regression parameters for Y
are ξ3 = γ3 = 0·5. Table 3 summarizes the results. The proposed method essentially outperforms
all naive methods in terms of mean squared error efficiency. Although the parameter estimates
from naive method (i) have low biases, they are less efficient than the proposed estimators, because
naive method (i) ignores the possibility that the composite endpoint is the observed death time
under scenario (c). Naive method (ii) treats the observed death time as the composite endpoint
under scenario (c) and therefore led to an excessive number of events. Consequently, the estimates
from naive method (ii) have smaller variation but large biases. Similarly, naive method (iv) also
yielded biased parameter estimates. Estimates from naive method (iii) have both large biases and
large variations.

In the next set of simulation studies, we compared the performances of the Wald tests of the
effect of X2 based on the proposed method and the four naive methods. We consider the same
simulation setting as above except that β2 varies from 0 to −0·6. Table 4 presents the Type I
error rates and powers at the 0·05 significance level based on 1000 replicates with n = 300. The
proposed method controls the Type I error rate accurately and is substantially more powerful
than all four naive methods. In particular, naive methods (ii) and (iv) tend to have inflated Type I
error rates.

Naive methods (ii) and (iv) replace the composite endpoint with the death time under scenario
(c). Intuitively, the covariate effect on the composite endpoint is a complicated function of the
covariate effects on both time to disease progression and time to death, as well as other parameters.
Consequently, the covariate effect on the death time tends to contribute more to the covariate
effect on the composite endpoint in naive methods (ii) and (iv). We consider a simple example to
demonstrate this observation. Suppose that Ts and Td are independent. Then the hazard function
for the composite endpoint is λ(t | X ) = exp(βTX ) + exp(γ TX ). If β1 = γ1, then λ(t | X ) =
exp(β1X1){exp(β2X2) + exp(γ2X2)}. The log hazard ratio of the composite endpoint for X2 is
then β∗

2 = log[{exp(β2X2) + exp(γ2X2)}/2]. Therefore, it is possible that β∗
2 = 0 but β2 |= 0

and γ2 |= 0. For example, we let β2 = 0·2 and γ2 = −0·25, yielding β∗
2 = 0. We conducted a

simulation study using this setting, where under the null hypothesis there is no treatment effect
on the composite endpoint. Based on 1000 replicates with sample size n = 300, naive methods
(ii) and (iv) led to inflated Type I errors at a significance level of 0·05, with empirical Type I
error rates of 0·09 and 0·12, respectively. The proposed method has an empirical Type I error rate
of 0·06.



SD (×100)

Table 3. Comparison of the proposed method and four naive methods based 
on 1000 replicates with n = 300

Parameter Bias (×100) MSE (×100) RE

Proposed method
α 2·1 12·2 1·5
θ 2·1 6·6 0·5
β1 2·2 10·0 1·1
β2 0·4 17·4 3·0

Naive method (i)
α 1·5 17·8 3·2 2·10
θ 2·2 8·8 0·8 1·71
β1 2·3 13·1 1·8 1·66
β2 −1·3 23·7 5·7 1·87

Naive method (ii)
α −12·1 8·0 2·1 1·38
θ 12·6 6·6 2·0 4·20
β1 −11·6 9·2 2·2 2·09
β2 25·9 15·9 9·2 3·04

Naive method (iii)
α 112·8 48·4 150·7 99·04
θ −20·0 6·5 4·4 9·16
β1 19·0 13·1 5·3 5·03
β2 −15·1 23·9 8·0 2·63

Naive method (iv)
α 18·2 11·6 4·6 3·05
θ 1·6 6·3 0·4 0·87
β1 6·8 9·4 1·3 1·27
β2 9·5 15·6 3·3 1·10

SD, empirical standard deviation of the estimates; MSE, mean squared error; RE, mean squared error
relative efficiency of the proposed estimators compared to the estimators using the naive methods.

Table 4. Type I error rate (×100) and power (×100) for testing the
effect of X2 on composite endpoints at significance level 0·05 based

on 1000 replicates with n = 300
β2 Proposed Naive (i) Naive (ii) Naive (iii) Naive (iv)

0 5 5 6 5 8
−0·1 8 8 5 7 4
−0·2 23 18 11 18 12
−0·3 47 35 27 37 33
−0·4 71 50 45 54 56
−0·5 88 66 67 74 81
−0·6 96 80 83 88 94

To examine the performance of the proposed test under model misspecifications, we consider
a variety of models for the composite endpoint and the gap time, including the semiparametric
transformation model with a normal error (Diao & Lin, 2005) and copula models. The proposed
test appears to be robust against model misspecification and is substantially more powerful than
the naive methods. Finally, as suggested by a referee, we generated data by mimicking real
applications. Specifically, we assess disease progression every six months or every three months,



Table 5. Frequencies and relative frequencies of the five scenarios for the 
prostate cancer data

Standard treatment New treatment
Scenario Frequency Relative frequency (%) Frequency Relative frequency (%)

(a) 130 23·2 119 21·2
(b) 0 0·0 0 0·0
(c) 74 13·2 72 12·9
(d) 121 21·6 112 20·0
(e) 235 42·0 257 45·9

leading to interval-censored data. While the proposed method is not designed for such data,
we impute the time to disease progression with the midpoint of the interval and then apply the
proposed method, which seems to be reasonably robust in this situation. Details of these two sets
of simulation studies are provided in the Supplementary Material.

5. APPLICATION

We now apply the proposed method to a randomized placebo-controlled clinical trial for non-
metastatic prostate cancer patients at high risk for bone metastasis. The primary endpoint was
bone metastasis-free survival, defined as time from randomization to bone metastasis or death,
whichever occurs first. Events of bone metastasis were determined by central review of images
collected periodically at baseline and on study, and therefore were censored at the last image
assessment date for patients who did not experience an event. All-cause death was assessed via
study contact, and was censored at the last study contact date for patients who were alive. Some
patients discontinued image assessments but stayed on study for overall survival assessment, so
they were censored earlier for bone metastasis but could die or be censored for death later. The
study was stratified by previous or current use of chemotherapy and by high risk for metastasis
based on prostate-specific antigen. The treatment phase of the study ended when a targeted
number of patients developed bone metastasis or died. In addition, the study had a long-term
survival follow-up phase, where patients who had progressed or who did not wish to continue
the scheduled study assessment were followed for survival status only.

We analysed a randomly selected subset of 1120 patients provided by the trial sponsor, with 560
in each arm. The proposed method was used to analyse the composite endpoint of bone metastasis-
free survival, adjusting for the stratification factors, and was compared with some naive methods
and two existing methods. For the proposed method, three covariates were included in the model
for the composite endpoint, the model for pr(G = 0) and the model for G when G > 0. These
covariates are: trt, taking value 1 for new treatment and value 0 for standard treatment; chemo,
taking value 1 for previous or current use of chemotherapy and value 0 otherwise; and psa, taking
value 1 if the patient was assessed to be at high risk for metastasis based on prostate-specific
antigen and value 0 otherwise. Among the 1120 patients, 80 had previous or current use of
chemotherapy and 542 were at high risk based on prostate-specific antigen. We included Y in
both the model for pr(G = 0) and the model for G when G > 0.

We used data in both the treatment and the long-term survival follow-up phases. Table 5
shows the breakdown of the five scenarios described in § 2. Most patients did not experience
bone metastasis and/or were still alive. The proposed method was used to evaluate the treatment
effect on bone metastasis-free survival. Table 6 shows the results for the model on the bone
metastasis-free survival based on the proposed method, the four naive methods, and the method
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Table 6. Results from the model on bone metastasis-free survival for the 
prostate cancer data

Parameter Est SE Stat p-value

Proposed method
α 1·1647 0·0674
θ 1·2539 0·0428
trt −0·1895 0·0805 −2·3543 0·0186
chemo 0·2760 0·1414 1·9520 0·0509
psa 0·6176 0·0823 7·5070 <0·0001

Naive method (i)
α 1·3322 0·0880
θ 1·2460 0·0474
trt −0·1973 0·0912 −2·1623 0·0306
chemo 0·2994 0·1621 1·8475 0·0647
psa 0·5486 0·0930 5·8999 <0·0001

Naive method (ii)
α 1·1406 0·0631
θ 1·3040 0·0436
trt −0·1837 0·0799 −2·2986 0·0215
chemo 0·2439 0·1397 1·7461 0·0808
psa 0·6219 0·0817 7·6119 <0·0001

Naive method (iii)
α 1·5015 0·1072
θ 1·1617 0·0446
trt −0·2010 0·0912 −2·2026 0·0276
chemo 0·2955 0·1617 1·8271 0·0677
psa 0·5142 0·0927 5·5459 <0·0001

Naive method (iv)
α 1·2653 0·0754
θ 1·2166 0·0410
trt −0·1878 0·0799 −2·3496 0·0188
chemo 0·2493 0·1395 1·7873 0·0739
psa 0·5916 0·0815 7·2588 0·0001

Chen et al. (2015)
trt −0·1715 0·0794 −2·1600 0·0311
chemo 0·2453 0·1414 1·7345 0·0826
psa 0·5593 0·0812 6·8845 <0·0001

Est, parameter estimate; SE, standard error; Stat,Wald test statistic; trt, treatment indicator;
psa, prostate-specific antigen.

proposed in the unpublished paper by Chen et al. For the proposed method, the prostate-specific
antigen risk level was highly associated with the bone metastasis-free survival. Patients at high
risk based on prostate-specific antigen, psa, had a 85·4% increase in hazard relative to patients
who were not at high risk. The corresponding 95% confidence interval was (57·8%, 117·9%)
and the p-value was less than 0·0001. The hazard ratio of treatment versus control for the com-
posite endpoint was estimated at 0·827 with a 95% confidence interval of (0·707, 0·969) and
a p-value of 0·0186. In this example, all methods gave consistent conclusions that the treat-
ment significantly reduced the risk for bone metastasis or death. However, as expected, naive
methods (i) and (iii) had large standard errors and there were also notable differences in some
parameter estimates between the proposed method and the four naive methods. According to the
proposed method, no covariates have significant effects in the zero-inflated hazard model (2),
except that psa has a significant effect on the probability that a composite endpoint is death.



With other covariates fixed, the odds that the composite endpoint is death for patients at high risk
based on prostate-specific antigen was estimated at 1·939 times the odds for patients at low risk.
The corresponding 95% confidence interval was (1·00, 3·76). We can draw similar conclusions
from the results based on the proposed method and the method of Chen et al. However, there
were notable differences in the parameter estimates, especially for the effect of psa. In addition,
the inference procedure of Chen et al. requires simulation and thus is computationally more
intensive.

6. DISCUSSION

Other parametric and semiparametric models may be used for the time to the composite
endpoint and the gap time, respectively. The parametric assumption on the distribution of the
composite endpoint may be relaxed through the use of B-splines over a sieve space. Furthermore,
it would be desirable to develop diagnostic tools to check the goodness-of-fit of the proposed
model. Future research along this direction is warranted.

In some applications, disease progression status is assessed periodically, leading to interval
censoring. Zeng et al. (2015) showed that the right-endpoint imputation method would lead to
biased estimation and reduced power when progression status is known only at periodic assess-
ment times. While it is challenging to analyse interval-censored data by using semiparametric or
nonparametric methods, we can extend the proposed models to this setting. Specifically, under
models (1)–(3), we can derive the likelihood for each possible scenario of the observed data and
develop inference procedures. This extension is currently under investigation. On the other hand,
our simulation studies have demonstrated that the proposed method with midpoint imputation is
reasonably robust with respect to interval censoring.

We considered a specific case where one component is terminal. In the case where no event
terminates the other component event, one can choose one component event as the terminal
event and apply the proposed approach. If one component event under monitoring is longer than
the other component, the component event with the longer censoring time can be chosen as the
terminal event. Otherwise, one can choose the lower-frequency component. Our method can also
be extended without assuming this terminating structure.

Often a composite endpoint has more than two components. For example, in evaluating
bone-target agents for advanced cancer patients, a composite endpoint of skeletal-related events
includes four components: pathologic fracture, spinal cord compression, radiation to bone, and
surgery to bone. In general, one can group components into two clusters and then apply the pro-
posed method. For example, for the skeletal-related events, one group could consist of pathologic
fracture, which is identified through regular skeletal survey, and the other three events could make
up the second cluster, which is monitored through clinical visits.

We assume conditional independent censoring for both endpoints. However, this assumption
may be violated in practice. For example, in the case of progression-free survival, patients may
drop out of disease assessment due to worsening disease status. It would be interesting to extend
the proposed method to account for informative censoring. In the prostate cancer trial, a large
percentage of patients were event-free at the end of the study. We may use public records post trial
to retrieve the information about survival status. However, caution is needed when including such
information in the analysis because the sample post trial can be biased; for example, patients may
die from other causes or take different treatments post trial. Finally, it remains the best approach
to minimize the possibility of missing data during the design and conduct of a clinical trial and
so minimize the impact of missing data on the analysis.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional simulation studies,
the proof of identifiability of the proposed model, and further details of the proofs of Theorems 1
and 2.

APPENDIX

Proof of Theorem 1

We introduce notation that will be used throughout the proofs of Theorems 1 and 2. Let Oi (i = 1, . . . , n)
denote the observations for the ith subject. Define Pn{g(O)} = n−1

∑n
i=1 g(Oi) and P{g(O)} = E{g(O)}.

The proof of consistency consists of two main steps. In the first, we prove that lim supn Ân(τ ) has an
upper bound with probability 1. Therefore, for any subsequence, there exists a further subsequence of
(η̂n, Ân) that converges to (η∗, A∗)weakly by the Helly selection theorem. In the second step, we prove that
(η∗, A∗) = (η0, A0).

Step 1. We prove the boundedness of Ân(τ ) by contradiction. Define Rj(O;ψ) = log Wj(O;ψ) (j =
1, . . . , 5), where Wj(O;ψ) (j = 1, . . . , 5) are as defined in § 2. Using the same notation for simplicity, we
replace a(t) with A{t}, the jump size of A(·) at t, in Wj(O;ψ) and Rj(O;ψ) (j = 1, . . . , 5).

Define ν̂n = Ân(τ ) and Ãn(t) = Ân(t)/ν̂n for t ∈ [0, τ ]. To prove that Ân in [0, τ ] is bounded, it is
sufficient to show that ν̂n is bounded. By Assumptions 1 and 3 and the definition of Ãn(t), we can show
that R1(O; η̂n, Ân)− R1(O; η̂n, Ãn) � c1 + log ν̂n − c2Ãn(G̃)ν̂n for some constant c1 and a positive constant
c2. Furthermore, we can show that R2(O; η̂n, Ân)− R2(O; η̂n, Ãn) = 0, R3(O; η̂n, Ân)− R3(O; η̂n, Ãn) � c3,
R4(O; η̂n, Ân)− R4(O; η̂n, Ãn) � c3 − c4Ãn(G̃)ν̂n and R5(O; η̂n, Ân)− R5(O; η̂n, Ãn) � c3 for some constant
c3 and a positive constant c4.

Suppose that ν̂n → ∞. It follows that, for some constant c5 and a positive constant c6,

0 � 1

n
ln(η̂n, Ân)− 1

n
ln(η̂n, Ãn)

� c5 + log ν̂n − c2Pn{I1(O)Ãn(G̃)}ν̂n − c4Pn{I4(O)Ãn(G̃)}ν̂n

� c5 + log ν̂n − c6ν̂n → −∞,

where the penultimate inequality is obtained from the conditionally independent censoring assumption,
Assumptions 1, 3 and 4, and the Glivenko–Cantelli theorem. This result contradicts the definition of (η̂n, Ân).
The above argument holds for every sample in the probability space except on a set with zero probability.
Thus we have shown that, with probability 1, Ân(τ ) is bounded for any sample of size n. Therefore, by
Helly’s selection theorem, we can choose a further subsequence, still indexed by {n}, such that (η̂n, Ân)

converges to (η∗, A∗) with probability 1.
Step 2. In this step, we show that (η∗, A∗) = (η0, A0). By differentiating ln(η, A) with respect to

A{G̃i} for �1i = �3i = 1 and setting the derivative to zero, we can see that Ân{G̃i} satisfies the equation

Ân{G̃i} = I1(Oi)

nPn

{∑5
k=1 Ik(O)Qk(t, O; η̂n, Ân)

}∣∣∣∣
t=G̃i

= I1(Oi)+ nPnI3(O)Q31(t, O; ψ̂n)

nPn

{∑
k∈{1,2,4,5} Ik(O)Qk(t, O; ψ̂n)+ I3(O)Q32(t, O; ψ̂n)

}∣∣∣∣
t=G̃i

,

(A1)
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where the expressions for Qk(t, O;ψ) (k = 1, . . . , 5), Q31(t, O;ψ) and Q32(t, O;ψ) are given in the
Supplementary Material. We can easily verify that, with probability 1, Qk(t, O; ψ̂n) (k = 1, 4, 5),
Q31(t, O; ψ̂n) and Q32(t, O; ψ̂n) are nonnegative. Furthermore, for any G̃i with �1i = �3i = 1,
Pn{I1(O)Q1(G̃i, O; ψ̂n)} is positive. Therefore, the denominator in (A1) is bounded away from zero, and
for a subject i with �1i = �3i = 1, Ân{G̃i} is positive and bounded.

We next construct another step function Ān(t) with jumps only at the observed gap time G̃i by replacing
ψ̂n with ψ0 in (A1). We verify that Ān(t) converges to A0 uniformly in t ∈ [0, τ ] with probability 1. As
is shown in the Supplementary Material, the class F1 = {∑5

k=1 Ik(O)Qk(t, O; η, A) : t ∈ [0, τ ], η ∈ B0,
A ∈ A, A(0) = 0} is bounded and P-Donsker, where A = {g : g is a nondecreasing function in [0, τ ],
g(τ ) � B0} and B0 is a positive constant such that Ân(τ ) � B0 with probability 1. Since a P-Donsker
class is also Glivenko–Cantelli, by the Glivenko–Cantelli theorem (van der Vaart & Wellner, 1996), Ān(t)
converges uniformly to E{I1(O)/μ(t)}, where μ(t) = E{∑5

k=1 Ik(O)Qk(t, O; η0, A0)}. By the conditional
independent censoring assumption, we can prove that E{I1(O)/μ(t)} = A0(t). Consequently, we conclude
that Ān converges uniformly to A0 in [0, τ ] with probability 1.

By the construction of Ân(t) and Ān(t), we can see that Ân(t) is absolutely continuous with respect to
Ān(t); furthermore, by letting n go to infinity, A∗(t) is differentiable with respect to A0(t) so that A∗(t)
is differentiable with respect to t. It follows that dÂn(t)/dĀn(t) converges to dA∗(t)/dA0(t) uniformly in
t ∈ [0, τ ].

By the definition of (η̂n, Ân), n−1ln(η̂n, Ân) − n−1ln(η0, Ān) � 0. Since B0 × A is a Donsker class and
the functionals Rk(O; η, A) (k = 1, . . . , 5) are bounded Lipschitz functionals with respect to B0 × A,
the class F2 = {∑5

k=1 Ik(O)Rk(O; η, A) : η ∈ B0, A ∈ A, A(0) = 0, A(τ ) � B0} is P-Donsker
and hence a Glivenko–Cantelli class. Therefore, by taking n → ∞, the left-hand side in the above
inequality converges to the negative Kullback–Leibler information. It then follows that, with probabil-
ity 1,

∑5
k=1 Ik(O)Rk(O; η∗, A∗) = ∑5

k=1 Ik(O)Rk(O; η0, A0). Therefore, from the identifiability result, we
obtain (η∗, A∗) = (η0, A0). This completes the proof of Theorem 1.

Proof of Theorem 2

To prove Theorem 2, we verify the four conditions (P1), . . . , (P4) in Theorem 3.3.1 of van der Vaart &
Wellner (1996), which are listed in the Supplementary Material. We first define a neighbourhood of the true
parameters (η0, A0) by U = {(η, A) : ‖η − η0‖ + supt∈[0,τ ](|A(t)− A0(t)|) < ε0} for a very small constant
ε0. Based on the consistency theorem, (η̂n, Ân) belongs to U with probability close to 1 when the sample
size n is large enough.

For any one-dimensional submodel given as {η + εh1, A + ε
∫

h2 dA} for (η, A) ∈ U and H ≡
(h1, h2) ∈ H, we can derive the score function for a single observation O as V (O;ψ)[H ] = lη(O;ψ)Th1 +
lA(O;ψ)[∫ h2 dA], where lη(O;ψ) = ∑5

k=1 Ik(O)dRk(O;ψ)/dη and

lA(O;ψ)
[∫

h2 dA

]
= I1(O)

{
h2(G̃)− exp{(X , Ỹ )Tγ }

∫ G̃

0
h2 dA

}

+ I3(O)

exp{R3(O;ψ)}
∫ G̃

0
{1 − q(X , Z̃ − s, X ; ξ)} exp{(X , Z̃ − s)Tγ }

× exp
[−A(s) exp{(X , Z̃ − s)Tγ }][h2(s)− exp{(X , Z̃ − s)Tγ }

∫ s

0
h2 dA

]

× λ(Z̃ − s;α, θ) exp(X Tβ) exp
[−�(Z̃ − s;α, θ) exp{X Tβ}] dA(s)

− I4(O) exp{(X , Ỹ )Tγ }
∫ G̃

0
h2 dA
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− I5(O)

exp{R5(O;ψ)}
∫ Z̃

Ỹ
{1 − q(X , s1; ξ)} fY (s1 | X ;α, θ ,β)

× SG(Z̃ − s1 | X , s1; A, γ ) exp{(X , s1)
Tγ }

∫ Z̃−s1

0
h2 dA ds1.

For ease of notation, we omit [H ] from V (O;ψ)[H ]. We define Un(ψ) = Pn{V (O;ψ)} and U (ψ) =
P{V (O;ψ)}. Thus it is easy to see that both Un(ψ) and U (ψ) are maps from U to l∞(H) and that
n1/2{Un(ψ) − U (ψ)} is an empirical process in the space l∞(H). It then follows that Un(ψ̂n) = 0 and
U (ψ0) = 0.

To prove property (P1), we make use of Lemma 3.3.5 of van der Vaart & Wellner (1996). Based on the
explicit expression for the score function, V (O; η, A)[H ] is continuously differentiable with respect to η
and ‖dV (O; η, A)/dη‖ � c9, where c9 is a positive constant. Furthermore,

∣∣V (O; η, A)− V (O; η, Ã)
∣∣ � c10

[
I1(O)

{
|A(G̃)− Ã(G̃)| +

∫ G

0
|A(t)− Ã(t)| dt

}

+ I3(O)

{∫ G̃

0
|A(s)− Ã(s)| dA(s)+

∫ G̃

0
|A(s)− Ã(s)| dÃ(s)

+
∫ G̃

0
|dA(s)− dÃ(s)|

}

+ I4(O)|A(G̃)− Ã(G̃)| + I5(O)
∫ Z̃

Ỹ
|A(s)− Ã(s)| ds

]

for some positive constant c10. Therefore supH∈H E[{V (O; η, A) − V (O; η, A)}2] converges to zero if
‖η− η0‖ + supt∈[0,τ ]{|A(t)− A0(t)|} → 0. Additionally, by using a similar argument to that in the proof of
Theorem 1, we can show that the class F3 = {V (O; η, A)[H ] − V (O; η0, A0)[H ] : (η, A) ∈ U , H ∈ H} is
P-Donsker. Therefore, according to Lemma 3.3.5 of van der Vaart & Wellner (1996), property (P1) holds.

Property (P2) holds because of the P-Donsker property of the class {V (O; η, A)[H ] : H ∈ H}. Further-
more, the limit random elements ζ constitute a Gaussian process indexed by H ∈ H and the covariance
between ζ(H1) and ζ(H2) is equal to E{V (O; η0, A0)[H1] × V (O; η0, A0)[H2]}.

The Fréchet differentiability in (P3) can be directly verified using the smoothness of U (η, A). The
derivative of U (η, A) at (η0, A0), denoted by U ′(η0, A0), is a map from the space {(η − η0, A − A0) :
(η, A) ∈ U} to l∞(H).

It remains to show that U ′ is continuously invertible at (η0, A0). Following the argument in the appendix
of Zeng & Lin (2007), it suffices to prove that for any one-dimensional submodel given as {η + εh1, A +
ε
∫

h2 dA} for H ∈ H, the Fisher information along this submodel is nonsingular. If the Fisher information
along this submodel is singular, the score function along this submodel is zero with probability 1. Using
similar arguments to those in the proof of identifiability of the model, we can show that V (O; η, A0)[H ] = 0
yields h1 = 0 and h2(t) = 0 for any t ∈ [0, τ ].

We now have verified properties (P1)–(P4), so Theorem 3.3.1 of van der Vaart & Wellner (1996)
allows us to conclude that n1/2(η̂n − η0, Ân − A0) converges weakly to a tight Gaussian random element
−U ′−1ζ in l∞(H). Moreover, it can be shown that η̂n is an asymptotic linear estimator for η0 and that the
corresponding influence functions are in the space spanned by the score functions. This implies that η̂n is
semiparametrically efficient by semiparametric efficiency theory.
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