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Abstract

Interfacial mass transfer of low4iusive substances in an unsteady flow environment is markedvayy thin
boundary layer at the interface and other regions with steegentration gradients. A numerical scheme capable of
resolving accurately most details of this process is pttesenn this scheme, the fifth-order accurate WENO method
developed by Liu et al. [13] was implemented on a non-unifetaggered mesh to discretize the scalar convection
while for the scalar diusion a fourth-order accurate central discretization wapleyed. The discretization of the
scalar convection-ffusion equation was combined with a fourth-order Naviek&sssolver which solves the incom-
pressible flow. A dual meshing strategy was employed, in iiie scalar was solved on a finer mesh than the
incompressible flow. The order of accuracy of the solver foe-dimensional scalar transport was tested on both
stretched and uniform grids. Compared to the fifth-order V@EMplementation of Jiang and Shu [10], the Liu et al.
[13] method was found to be superior on very coarse meshessdlkier was further tested by performing a number
of two-dimensional simulations. At first a grid refinemerdtteras performed at zero viscosity with shear acting on
an initially axisymmetric scalar distribution. A secondinement test was conducted for an unstably stratified flow
with low diffusivity scalar transport. The unstable stratification duoyant convection which was modelled using
a Boussinesq approximation with a linear relationship leetwflow temperature and density. The results show that
for the method presented a relatively coarse meshfie®nt to accurately describe the fluid flow, while the use of a
refined dual mesh for the low-iusive scalars is found to be beneficial in order to obtain aljligccurate resolution
with negligible numerical dfusion.
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1. Introduction

To accurately resolve low-flusivity scalar transport problems special numerical sa@ware necessary for the
discretization of the convective term in order to avoid und@dor overshoots of the scalar quantity. The first order
upwind method, for example, could be used fteetively avoid such under- afat overshoots but at the cost of
introducing an excessive amount of numeric#idiion [5, 17]. Up to now, a number of DNS studies of gas transfe
across the air-water interfaces have been carried out &ardfriven and stirred vessels. Hasegawa and Kasagi [8]
studied wind-shear driven mass transfer across the turbinieerface at a Schmidt number $ft= 100. They used
a pseudo-spectral Fourier method for the spatial dis@tbiz in the horizontal directions, whereas the finite vadum
method is employed in the normal direction in which turbtilend molecular mass fluxes are evaluated at a cell
surface with second-order accuracy. Handler et al. [6] aspdeudo spectral approach with Fourier expansions to
carry out direct numerical simulations for the transpora @iassive scalar at a shear-free boundary in fully developed
channel flow. Similarly, Banerjee et al. also used a psepéatsal method to extensively study the mechanisms of
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turbulence and scalar exchange at the air-water interfasevieral publications (see [3, 2] and references therein).
Schwertfirm and Manhart [15] also studied passive scalasfrartin a turbulent channel flow for Schmidt numbers up
to S c= 49. They used a similar approach as presented in the presénbwsolving the scalar on a finer grid than the
velocity which was mapped by a conservative interpolatiothé fine-grid. An explicit iterative finite-volume scheme
of sixth-order accuracy was employed to calculate all cotive and dffusive fluxes, while for the time-integration a
third order Runge-Kutta method was used [16].

The pseudo-spectral methods used above have excellenpeogerties when the solution is relatively smooth.
However, a main disadvantage of using spectral methodmlig® formation of non-physical oscillations near steep
gradients that may regularly occur in the solution of a catiea-diffusion problem when the filusivity is extremely
small. These Gibbs oscillations (under- grdovershoots) [19] near steep gradients are not uncommarcam
also be found when higher-order central finitéfelience methods are used on a relatively coarse mesh totiiscre
the convection of a scalar with lowf#lisivity. This can be overcome by using weighted essentraily-oscillatory
schemes (WENO) which have excellent shock capturing chfieki Their non-oscillatory behaviour is advantageous
in dealing with very steep gradients. In this paper, we pres@umerical scheme developed specifically to resolve the
details of the interfacial mass transfer of lowffdsive substances by adapting the weighted essentiallyacitiatory
(WENO) by Liu et al. [13]. They are based on essentially neoiltatory (ENO) schemes which were first published
in the meanwhile classic paper of Harten et al. [7]. Liu e{H8] introduced the idea of taking a convex combination
of interpolation polynomials to construct a stencil usirgn#inear weights with a high order-of-accuracy in smooth
regions while weighing out the non-smooth stencils in regioontaining steep gradients or discontinuities. They
studied WENO(2 — 1) schemes for dlierent stencil sizes, i.e.= 2 (WENO3) and = 3 (WENO5).

In the meantime a large variety of WENO schemes has beenapmel Many improvements were made by
modifying the smoothness determination. For instancegJand Shu [10] introduced a new smoothness indicator
that is used to evaluate the non-linear weights. The siz@efttencil has also been further increased by Balsara
and Shu [1] extending it up to = 6 (WENO11). Henrick et al. [9] could show that the weights gfated by the
classical choice of smoothness indicators in [10] failetetmver the maximum order of the scheme at critical points
of the solution where the first derivatives are zero. Theyettged the so called WENOM schemes where a mapping
procedure is introduced to keep the weights of the stensitdase as possible to the optimal weights. The resulting
(mapped) WENOM scheme of Henrick et al. [9] presented mocarate results close to discontinuities. Even more
recently, Borges et al. [4] achieved the same results as elBWENO schemes without mapping but by improving
the accuracy of the classical WENO5 scheme by devising a meothness indicator and non-linear weights using
the whole 5-points stencil and not the classical smoothinessator of Jiang and Shu [10] which uses a composition
of three 3-points stencils. The schemes of Borges et al.rgtkaown as WENO-Z schemes. Of all the schemes
discussed above the classical WENO5 scheme is used mosy\@dé4, 12]. In our simulations we do not expect
any discontinuities in the scalar field so that the classit&INO5 scheme of Liu et al. [13] is a good choice to
accurately resolve low-ttusive scalar transport which may lead to steep concentrgtiadients.

An example of application is given for the 2D case of buoyeorivectively driven mass transfer with a Prandtl
number ofPr = 6 and a Schmidt number &c= 500. One typical process in nature of such a case is the dlsorp
of oxygen into lakes during night time. This process is coliegd by the low dffusivity of the dissolved gas in the
water and the convective instability triggered by the digndifference between the cold water at the top surface and
the warm water in the bulk. The convective-instability emtes the gas transfer into the water body significantly
compared with the static condition with onlyfilisive gas transfer. This lowfllisive process results in a very thin
concentration boundary layer that is found at the watemserfExperimental measurements near the surface (such as
the mass flux) are very fiicult. There is a need to fully resolve the near surface mashenin order to understand
the physical mechanism.

Below, the capability of the newly developed code to acalyaesolve low-difusivity scalar transport problems
will be illustrated. First the full set of 2D equations to l&d and the formulation of the numerical schemes used in
Section 2 are presented. Section 3 covers 1D numericaliexgets that were performed to determine the accuracy of
the applied schemes on uniform and stretched meshes fopbotly convective and purelyfiiusive scalar transport.
The numerical schemes were further tested by performingnabeu of 2D-simulations. The first 2D application
case, presented in Section 4, deals with a zero-viscogigdgtshear flow acting on an initially axisymmetric scalar
distribution. In the last section the solver was tested tier2D case of low-diusivity scalar transport in buoyancy
driven flow.



2. Formulation of Numerical Method

The full set of the 2D governing equations to be solved in ptdeaddressimulate the low-dtusivity scalar
transport problem are first presented in this section falbwy the formulation of the numerical schemes used. For
the scalar transport the two-dimensional convectidiudion equation of the scalar= ¢(X, z t) in conservative form
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wherex andz are the horizontal and vertical directions, respectiveandw are the velocities in theandz directions,
D is the molecular dfusion codicient of the dissolved substance drdenotes time.
For the flow-field the incompressible Navier-Stokes equeiicolved. The continuity equation for two-dimensional

incompressible flow reads,
ou  ow
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and the momentum equations are given by
ou ap
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wherep is pressure and andc represent the sum of the convective anfiugiive terms
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whereReis the Reynolds number.

2.1. Discretization of the convectionfilision equation of the scalar

In this section we outline the discretization of the transpquation for the scalar as given in equation (1). The
diffusive term on the right of (1) is discretized using a fourtdey accurate central scheme, while the convective term
is discretized using variants of the fifth-order WENO sche@/eloped by Liu et al. [13] and Jiang and Shu [10]. The
WENO schemes use an approximation of the scalar fluxes aethimterface by employing interpolation schemes.
The reconstruction procedure produces a high order aecapgroximation of the solution from the calculated cell
averages. Below the implemented scheme is detailed onlgérdonension. Generalization to higher dimensions is
straightforward.

When ignoring the dfusive term, the one dimensional variant of (1) can be resvriéts
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whereu is the velocity in thex-direction. As we employ a staggered mesh, for the volum&edraround = x;, the
convective fluxeR" andR" are defined by
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whereay, a;, a are codicients and® the Lagrange interpolations polynomials defined in (16hmimplementation
of Liu et al. [13], forR" the weights for the convex combination of the quadratic bage interpolation polynomials
are given by,

S S S — (10)
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while for R™ the weights are given by
1 1 1
B0 4 +15) BT 241502 BT 126+ 1S00)° (11)
wheres = 107 and the smoothness indical®; is defined by
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The original calculation of the weightg, a; anda, as presented above is compared to an alternative developed
by Jiang and Shu [10], in which the weights R are given by
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while for R™ the weights are given by
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with the smoothness indicatolS; defined by
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Note that in the 1D tests presented below a power6f3 in (13) and (14) was used. The upstream central method
can be obtained from both the Liu et al. [13] and Jiang and 3Bliimplementations of the weights by setting all
smoothness indicatot$§ in (10), (11) and (13), (14) to zero.

The modified quadratic Lagrange interpolatiéhéx) in equations (8) and (9) read
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High-order polynomial interpolations to the midpoim% are computed using known grid values of the scalar
The scheme uses a 5-points stencil which is divided inteetBrpoints stencils as shown in Fig. 1.

These are interpolations of the scalar to the faces of thenwelcombined with a smoothing term at the right.
Using the above, depending on the signyigg andui+%, we have four possible ways to calculate the discretization

of the convective termk;(¢) = (—u%)lxi inx:
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Figure 1: Schematic illustration of the weighted 5 point\@ncombination composed of three 3-points stencils
So, S1, S, and their respective weighég, a;, a; used in the classical WENO5 scheme. [18].
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By examining the equations above it can be seen that at etmfaimexn% of 2 neighbouring cells the scalar flux (ei-
theru;, 1 R" or Ui, 1 R, is uniquely determined, which ensures that any scalartijydnat leaves the volume centred
around§q through this interface will enter the volume centred aroxngd Upwind information is incorporated by the
way in which the scalar at each cell interface is interpalakeor instance, the interpolation stencil R (8) - which
is employed Whertu”% > 0 and consists of five points witk = x; in the middle - is used to calculate the scalar at
the locationx = X1 which is located upstream (upwind) ®f= X;. A similar argument holds for the calculation of
R (9). Hence, both stencils are non-symmetric and use mooentétion from the upwind direction than from the
downwind direction. Based on this bias, the method disaliabeve can be classified as an upwind method.
With the methods described here a fifth-order accuracy cachieved. Note that the weights given to the interpo-
lating polynomialsag, a1, &, depend on the local smoothness of the solution. Interpolgidlynomials defined in
regions where the solution is smooth are given higher weititén those in regions near discontinuities (shocks) or
steep gradients (like the gas concentration near the atteifi our application case presented in Section 5).

The difusive term on the right hand side of (1) is discretized usifayath-order central finite dierence method
for the second derivative such as,

% —girak + 16pis1k — 30pik + 16pi-1k — gi-2k

e 12(6%)2 (7

and
0~k + 16piks1 — 30pik + 16pik-1 — k2
02 "~ 12(52)?
wheresx; = Xir1 = %1 andoz = %,1 — 7.1, respectively. On a stretched mesh the actual discreiizatefi-
cients are obtained from the above equations using Lagrategolations to a seven-point numerical stencil. The
time integration of the convection4tlision equation is implemented using a third order Rungdakmethod (RK3)
developed by Shu and Osher [18] that reads,

(18)
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2.2. Flow Solver

This section outlines the numerical method of the flow sobigd in the two-dimensional simulations presented
in Sections 4 and 5. The velocity field is solved by a finitdedience discretization of the convective terms using a
fourth-order unconditionally kinetic energy conservingtirod combined with a fourth-order accurate central method
for the difusive terms [20]. The 2D incompressible Navier-Stokes ggués discretized on a non-uniform, staggered
mesh in combination with a second-order accurate Adam&fBeh time integration. The continuity equation (2) for
the two-dimensional incompressible flow in discretizedri@n a mesh as shown in Fig. 2a reads
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(a) Variables on a staggered mesh (b) Dual sub-mesh refined by factor=R2 (c) Dual sub-mesh refined by factor-R3

Figure 2: Variables on the new dual mesh. The flow field is sbime the outer coarse mesh, whilst the scalar is
computed on a refined subgrid. For the transport of the sttadarelocities are interpolated onto the midpoints of the
subgrid
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When substituting the momentum equation into the congnedfuation a Poisson equation for the pressure is
obtained. The Poisson equation is iteratively solved usiregconjugate gradient method with a diagonal precon-
ditioning. From the obtained pressure field the new velofigl can be calculated by rearranging the discretized
equations of (3) and (4),
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Fig. 2a shows the location of variables on a staggered mesicHieve kinetic energy conservation interpolations
are required to evaluate the convective term. For instah(x;%, Z) only theu-velocity component is available at
that location, while thav-velocity is only available at>(,zk+%). Hence an interpolation off to the position where
uis defined givesv, 1 ,. An equivalent procedure for tremomentum where needs to be interpolated wheseis
defined givesi, 1. This yields to the discretization of the convective termsifourth-order central discretization,

— 1 1
Cox(U, Wi, 14 = — > X + BX,3 —BX_) %3 { = Uiy s g g g+ Uig i) + 8U g (Uis i+ Uiz )

1
~Zis2 + 8741 — 8Z-1 + Z-2
X{ ~ Uiy 2 g oW+ Wit 0) + 8 1 s (Wi 1 g + Wiy 1 449) = U2 g a (Wi o+ W1y o)

+Uiy 1o (Whn i + V_Vi+%,k—2)}] (23)

=8Ui_1 (Ui g+ Uiz ) + Uiz (Ui zy + U 3,k)} +

The convective terms in the-direction are discretized in a similar manner. Thutiive terms are discretized using
the fourth-order accurate central discretization schefhe) @nd (18)) in which the cdicients of the seven point
stencil employed for the discretization on a non-unifornsimare determined using Lagrange interpolations.

2.3. Dual Mesh Approach

Because the €lusivity of the scalars of interest is up to three orders of nitagle smaller than that of the momen-
tum, the resolution requirements for the flow field is lesegent as shown by the mesh refinement test in Section
5.2. Thus, to save computing time a dual mesh approach isasséldistrated in Fig. 2. The velocity is solved on
a coarser base mesh (Fig. 2a), while the scalar is definedeofingr subgrid (Fig. 2b and 2c) so that the required
computational resources are significantly reduced.

To calculate the convective transport of the scalar, thecits are interpolated onto a subgrid using a fourth-
order Lagrange interpolation. When employing a subgrichesfient by a factor dR = 2 (Fig. 2b) an interpolation is
required for each subcell as the velocity location and tladasdocations do not coincide with their counter parts on
the base mesh. In contrast, Fig. 2c shows that in the caseulifgaid refinement by a factd® = 3 some velocities
and the central subcells for a scalar are defined at the sayatdos.

2.4. Implementation of Boundary Conditions

Dirichlet and Neumann boundary conditions are implemebtedxtrapolating the values obtained at the latest
time step to ghost cells outside of the computational donTdiis has the advantage that there is no need to change the
numerical stencils near boundaries. Suppose the quaristgefined on afN-point mesh and we want to implement
a Dirichlet (odd) boundary conditiogy = Q. By using the known vaIueq%,qg, - On- g the vaIuesqN”,% are
determined by using the formula

OUnsi-i = 2Q- On-iv fori=1,...,3. (24)
To implement the Neumann (even) boundary condition=a0, we use the formula
iz = G fori=1...,3 (25)

The free-slip condition for the velocity is implemented tsing a Neumann boundary condition (25) of the veloc-
ity component that is parallel to the boundary and a Dirichleundary condition (24) for the component that is
orthogonal to the boundary (using the value zero at the banyritself).

3. 1D Numerical Experiments

In this section we apply the WENO-scheme fafelient test problems with the purpose of predicting the ayur
of the method on uniform and stretched meshes, respecti#siyhe problem is a convectionitlision problem the
numerical scheme was tested for both, scalar transportiection only and by diusion only.
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3.1. Scalar transport by convection on a uniform grid

By using the modified quadratic Lagrange interpolationsrémonstruction (16) we expect to achieve a fifth-
order accuracy for the convective scalar transport on mmifmeshes. In both of the following cases (uniform and
non-uniform meshes), we use the previously described WEN@maes for spatial discretization and tH&-8rder
Runge-Kutta-scheme for time integration of the one-dirared convection equation. Because we want to predict
the numerical error in the WENO scheme, physicélgion will be neglected. kp(x;, t) andgexactare the numerical
and the exact solutions, respectivelyat{), the t; discretization error is given by

N
b= Z [ (%, t) — exact|, (26)
i=1

2|~

whereN describes the number of nodes in the domiihe time,i the node number.
At first the WENO schemes are tested in a one-dimensional §pbjain using uniform meshes. Therefore, the
1D scalar convection equation,

(27)

was discretized on & x < 2 using periodic boundary conditions>at= 0 andx = 2. The scalar distribution was
initialized by a sine wave functiop(x, 0) = ¢o(X) = sin (TX).

In the calculations an extremely small CFL-number was usethat the time-step would be small enough to
ensure that the third-order temporal behaviour of the Riagféa scheme would noti&ct the rate of convergence of
the WENO schemes.

Table 1 gives the L error after running the simulation during one time-unit asllvas the resulting order of

WENO-Liu et al. [13] WENO-Jiang and Shu [10] Upstream Central

N ti-error order| N t 1-error order | N ti-error  order
10 1.17E-02 - 10 2.11E-02 - 10 3.11E-03 -
20 2.47E-03 2.24/ 20 1.10E-03 427 | 20 1.01E-04 4.95
40 3.30E-04 290/ 40 3.26E-05 5.07 | 40 3.18E-06 4.99
80 253E-05 3.70, 80 9.98 E-07 5.03| 80 9.99E-08 4.99
160 1.57E-06 4.01 160 3.12E-08 5.00| 160 3.15E-09 4.99
320 6.13E-08 4.68 320 9.76 E-10 5.00| 320 1.03E-10 4.94
640 1.04E-09 5.89 640 3.13E-11 496 | 640 4.26E-12 4.59

Table 1: Absolute error and order of convergence on unifoeshes withe = 1076,

accuracy. The WENOS5 implementation of Liu et al. [13] was paned to the alternative WENO5 scheme developed
by Jiang and Shu [10] and the upstream central method thhtagn@d by selecting the smoothness indicat8rs= 0

in either of the WENO schemes. Starting frddn= 10 nodes the { error is decreasing when increasing the number
of nodes to 20, 40,..., 640. As previously found by Jiang ama [$0], the implementation of Liu et al. [13] shows a
smaller error than the scheme of Jiang and Shu [10] on thesed#&-point mesh while on finer meshes the Jiang and
Shu [10] implementation is superior.

Furthermore, the scheme of Jiang and Shu [10] as well as thteeam central scheme show a fifth-order be-
haviour, while the original scheme of Liu et al. [13] wouldedgkan even finer mesh to exhibit this behaviour. With
the mesh sizes shown in the table, we would need to inceesigmificantly (even up to a value ef= 1) to achieve
higher order. The choice of the smalk 10°6 was necessary for the present application in order to res@iy steep
gradients. To test whether the Liu et al. [13] scheme hasdkential to exhibit a fifth-order behaviour, an additional
test had been carried out in whiehwas increased te = 1 (Table 2). As can be seen in Table 2 for 1, indeed
a fifth order behaviour for the original scheme was obsereed\f> 80 grid points. The slight decrease in order of
convergence foN = 640 points is possibly caused by machine-accuracy liroitate#fecting the calculations.

In practical calculations the mesh will be relatively caas® that the original WENO implementation of Liu
et al. [13], which has a good accuracy on coarse meshes, Wweudgood choice. Though the fifth-order upstream
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WENO-Liu et al. [13]
N t i-error order
10 3.46E-03 -
20 1.76E-04 4.30EO00
40 2.83E-06 5.96E00
80 9.44E-08 4.91EO00
160 3.11E-09 4.92E00
320 1.02E-10 4.93E00
640 4.26E-12 4.59E00

Table 2: Absolute error and order of convergence on unifoeshnas withe = 1.

central method is shown to be even more accurate on coarsemasis not the method of choice as the absence
of a mechanism to deal with steep gradients could resultdrafipearance of wiggles as will be briefly discussed in
Section 5.1.

3.2. Scalar transport by convection on non-uniform meshes
Using the modified Lagrange interpolations the WENO-schieaséoeen applied on non-uniform meshes on which
the node distribution is given by:

tanh,)
tanh(x,)

(i) [1 tanh(x,)

g 1O+

]x(n» (28)
fori =1,...,n—1, with

i
6/2n—

X

X
X1 = 6/2

The procedure for the stretching is controlled by the patande The N-point mesh distribution is so thaf0) = O
andx(ny) = 1 whereny, = N/2. The resulting mesh is subsequently mirrored abxodtl to obtain the grid points
betweerx(ny) = 1 andx(N) = 2.

The results of the tests usidg= 1.0 and 30 is presented in Table 3. The absolute errors, as expecesiyaller

6=10 6=30
N tq,-error  ty-order | N tq-error  ty-order
10 1.20E-02 10 3.58E-02

20 241E-03 2.32E00| 20 6.28E-03 2.51E00
40 3.91E-04 2.63E00| 40 1.60E-03 1.98E00
80 6.27E-05 2.64E00| 80 3.77E-04 2.08E00
160 1.41E-05 2.15E00| 160 9.26E-05 2.03E00
320 3.45E-06 2.03E00| 320 2.31E-05 2.00E00
640 8.62E-07 2.00E00| 640 5.77E-06 2.00E00

Table 3: Absolute error and order of convergence on noreamiimeshes witls = 1075,

for the mesh with reduced stretching. Compared to uniforrsiras it can be seen that the order of accuracy decreases
to approximately 2.



3.3. Scalar transport: pure gusion

In this section we apply the fourth-order accurate cenisardtization (17) for the solution of scalaffdision. In
the one-dimensional case, concentration gradients iy twedz -directions are zero, and we have the one-dimensional
diffusion equation for a scala(x, t)

2
O _po%
ot 0x2
For the test a one-dimensional domain was chosen withkG< 5L. A mesh withN grid points was defined with

a refinement near the surface where the concentration boulayer will form. At x = 0 the boundary condition
¢(0,1) = 1 was imposed. The analytical solution for this boundary&adroblem is given by

(29)

X
e(x,t) =1 erf( \/ﬁ) (30)
The initial condition for the test was given by the analyitisalution as defined in (30) 10 seconds. In the case
of diffusive gas transfer into a liquid = %cand for the transfer of oxygen into water we have a Schmidtharm
of Sc= 500 and a Reynolds number &&= 100, which is based on a characteristic length scale 6f1l cm and a
characteristic velocity afl = 1 cnys. The latter gives us a characteristic time scale¢ efL/U = 1 second.

The absolute errors and order of accuracy for the pudfesion scalar transport on non-uniform meshes were tested

for N = 10 to 640. The results after 1 time-unit are shown in Tableht dbsolute errors in the numerical results are

6=30 60=45
N ti-error  ty-order N ti-error  tj-order
10 1.47E-04 10 1.27E-03

20 2.22E-04 -5.95E-01 20 3.26E-04 1.96E00
40 2.45E-04 -1.41E-01 40 2.53E-05 3.69E00
80 2.11E-05 3.54E00| 80 1.50E-06 4.07&00
160 1.73E-06 3.61E00| 160 1.00E-07 3.91E00
320 1.12E-07 3.95E00 | 320 6.72E-09 3.90E00
640 7.19E-09 3.96E00 | 640 4.37E-10 3.94E00

Table 4: Absolute error and order of convergence on nomsumiineshes for pure filusion case.

very small, illustrating very good agreement with the atiesf solution. A fourth order accuracy is achieved even
with increased stretching.

All 1D numerical tests described above (Sections 3.1 to ilBuBtrate the advantageous behaviour of the cho-
sen combination of a WENO-scheme with a fourth-order diszaion of the difusive terms which resulted in a
low numerical difusion and small absolute errors for both modes of transparg convection and pureftlision,
respectively.

4. Two dimensional sheared scalar distribution

To further test the robustness of the numerical scheme, vierpemesh sensitivity tests in 2D for two application
cases, namely for sheared scalar distribution and Idtusivity scalar transport in buoyancy driven flow. The first
problem deals with a smooth scalar distribution withoutacdiffusion being sheared by a zero viscosity flow as
shown in Figure 3. After 1 time-unit the flow is reversed witle taim to obtain the initial distribution of the scalar
back so that the distribution & 0 should be the same astat 2.

The simulation was run on a.5«< 5L domain using periodic boundary conditions in the horizafigdction and
free-slip boundary conditions for the velocity combinedhaero-flux boundary conditions (25) for the scalar along
the upper and lower boundaries. At 0, the scalar field was initialised by

¢ix = 05(1+ coserv(x - 25)° + (z - 25))), (31)
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Figure 3: A detail of the sheared scalar distribution. @x8tsecond and b) at1.1 seconds.

while the flow field was initialised using

atan(10% — 2.5))

U1y =2 p (32)
At t = 1 second the flow field was reversed, so that
atan(10% — 2.5))
U1k = -2 — (33)

After t = 2 seconds of simulation the error is determined by compahiagnitial to the calculated scalar distribution.
As can be seenin Table 5, a grid refinement study was carridayqerforming simulations on a sequence of uniform
meshes with 8& 80 up to 640x 640 points. With increasing number of grid points the ordeaazuracy was found
to increase significantly from about 2 to 4.

Ny X Ny ti-error  tj-order

40x 40  1.34E-03 -

80x80 3.51E-04 1.93E00
160x 160 7.30E-05 2.26E00
320x 320 9.33E-06 2.97E00
640x 640 5.92E-07 3.98E00

Table 5: Absolute error and order of convergence resultiagnfthe 2D sheared scalar distribution test on uniform
meshes using the WENO scheme of Liu et al. [13] with 107°.

5. Two-dimensional low-dffusivity scalar transport in buoyancy driven flow

The second 2D application case considers the problem oflifiwsivity (high Schmidt number) mass transfer in
buoyant-convectively driven flow. An example in nature is tixygen absorption through the air-water interface in
lakes at nighttime when the lakes’ surface is cooled by theglging cold air leading to unstable stratification which
in turn causes mixing at the water side.

The description of the 2D numerical setup for the problensifoflows. A quadratic domain was chosen with an
edge length of b as illustrated in Fig. 4 The base grid size wgs= 400 andn, = 256 in thex- andz-directions,

11
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Figure 4: Schematic representation of the computationaladn. The scatter shows everygrid line of the major
grid used for the velocity field. The mesh for the scalar wather refined by factors & = 2,3 and 5.

respectively. The mesh was stretched in zhrection withé = 3 to obtain a finer resolution near the top where
a steep concentration gradient occurs. The general stmgtphocedure has been given in (28). For all variables,
periodic boundary conditions were employed in the horiabdirection. For the velocity field free-slip boundary
conditions were used at the top and bottom of the computdtidomain. At the beginning of each simulation all
velocity components were set to zero. The full set of 2D dquatfor the velocity given in (2) to (6) is solved. It
should be noted that to account for theets of buoyancy in our application case the buoyancy g€iih) is included
into equation (6) so thatreads

c - ow?  duw 1 $w+¥w
- X2 oz

7 ax Re } +B(T7). (34)
The termB(T*) is modelled using the Boussinesq approximation and is etiimmof the non-dimensional temperature
T* defined as

T-Ts

Tro s
Teo—Ts

(35)
where the temperature at the top of the domain was set to aviated ofT = Ts = 20°C, see (24), while in the rest of
the computational domain the initial bulk temperatiligg was 23°C. The relation between density and temperature
within this range can be assumed to be linear. To avoid heaef at the bottom of the computational domain an
adiabatic boundary condition (25) was employedTorThe temperaturg& is a scalar and hence treated the same as
¢, see (1).

At the top of the computational domain the scajawas kept at a value af = ¢s (24) while at the bottom a
zero-flux boundary condition (25) was employed. The scaks mon-dimensionalized using the scalar magnitude at
the top boundarys and the initial magnitude in the bulks o = 0 so that

X ¥ — ¢BO
= —. (36)
¥s — ¥B,0
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The convective instability was triggered by adding randastudbances to the temperature field after letting it
evolve fort = 11 seconds in order to avoid the triggering of the instabititdepend on the mesh size or numerical
round df error. The same disturbance field was used in all simulatidie random numbers that were added to
T* were uniformly distributed between 0 aiigh,. To test the influence of the level of the random disturbaices
the development of the instability, a test was performed lvictv a random disturbance field was rescaled so that
Tran = 0.010, Tran = 0.020 andT,,, = 0.040 before it was added to the non-dimensional temperatarall three
simulations exactly the same buoyant convective disturbdield was found to develop. As can be seen in Table 6,
the diferent levels of disturbances were found fizet the time it takes for the plumes to develop. Based on tthe: i

Tran  time at which the falling plume reaches4.0 cm
0.010 23.75s
0.020 22.30s
0.040 20.85s

Table 6: The time dierence found between the development of disturbances.

difference of 1.45 seconds between subsequent simulationkigh the level of random disturbances is doubled) the
exponential growth factot for the buoyant-convective instability was estimated tollse0.478.

To facilitate the comparison between various simulatiowslving buoyant convection, in the simulations dis-
cussed below (with the exception of Section 5.4) the samdomantemperature field consisting of uniformly dis-
tributed random numbers betweén= 0 andT,, = 0.020 was added to the non-dimensional temperature field.

5.1. Comparison of scalar convection methods in 2D

As mentioned briefly in Section 3.1 although the fifth-ordpstieam central method (C5) shows better accuracy
on coarse meshes, it is not the method of choice for the duspgaiication due to the absence of a mechanism to deal
with steep gradients which could result in the appearancegdgles. To demonstrate this we performed a number
of initial 2D simulations on the 408 256 base mesh using the C5 and the WENOS5 schemes discusssttionSs.
Figure 5 shows the profiles extracted at a cross sectims=at.5 cm andt = 45 seconds obtained for the C5 scheme

03

02}

0.1

L L L L L L L L 1 L L L L L L L L L
1.95 2 2.05 2.1 2.15
x/L

Figure 5: Comparison of WENOS5 schemes (JS2, JS3, LOC) arfittiherder central scheme (C5), showing profiles
of the scalar distributiop atz = 4.5cm andt = 45 seconds using a Schmidt numbeaf= 500.

and diferent variants of the WENOS5 scheme. The cross-sectiorsites with the falling plumes that develop due to
the convective instability which induces sharp gradiemthié scalar distribution (see also Figure 7a). The plotalsve
that wiggles appear close to steep gradients when using3hmethod. It was found that the wiggles completely
disappear when we use the WENOS5 schemes JS2 and JS3 of Jib8hwafl 0] with powers = 2 and 3, respectively

- see (13,14) - as well as the original implementation of ltiale[13] (LOC). It can be seen that the results obtained
using the WENOS schemes are very similar.
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In the following sections, the mesh sensitivity for resntyithe 2D flow and concentration fields were tested in
several subgrid mesh refinement studies.

5.2. Mesh sensitivity test : Flow-field

To verify that the flow-field was fully resolved on the chosdlD4 256 base mesh, the grid was refined in all
directions by factors of 1.5 and 2, respectively. Fig. 6 shaole contour plots and the velocity profile obtained

800 x 512 gridpoints

L v |

' B -
3 g 0.35 — nx = 400, nz = 256
0.31 i A nx=800,nz =512
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(a) vertical velocityw field on a grid 400x 256 and (b) vertical velocityw along a line az = 4L aftert = 45 seconds
800x 512 aftert = 45 seconds

Figure 6: A grid refinement showed that the velocity field ibyfeesolved on a 40& 256 grid.

from the simulations with the base grid and the mesh refined factor 2 R = 2) (with 800x 512 points) after

t = 45 seconds. The contour plots of the flow-field using the rdfimesh did not show any visible changes in the
flow structures (Fig. 6b). This is further confirmed by thetioal velocity profiles along a horizontal line at= 4L.
The profiles show a nice convergence verifying that the vsldield is fully resolved on the 408 256 grid which
was subsequently used in all further cases.

5.3. Mesh sensitivity test : gas concentration field

As described above, we used a dual-mesh approach in whidthar was resolved on a finer mesh than the one
used for the velocity. Various levels of refinement were eped as illustrated in Fig 2. In this section, the mesh
sensitivity for the scalar transport using this dual megtregch is evaluated. Fig. 7 shows a comparison of the non-
dimensional gas concentration contour plots that viseidlie development of the scalar transport at45 seconds
using the base mesh (480256) for both velocity and scalar and the dual mesh approatthrefinement factor 3
applied to the scalar. The Schmidt numbe®is= 500 which is equivalent to the filiision of oxygen in water.

In general, both concentration fields in Figs. 7a and 7b i¢kiessame structures of downwards plumes. However,
a zoomed view of the top region near the water surface reaaalsre detailed representation of the gas concentration
field when the dual mesh approach is used (Fig. 7c and 7d)séleate that the gas concentration in all figures is
interpolated to the base grid and not shown on the refined oestfor the scalar transport.

Figs. 8 and 9 show line plots of the scalar field at varioustiooa within the domain. The locations are across
or along the typical mushroom pattern that develops as dt @stine convective instability where sharp gradients in
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Figure 7: Comparison of the gas concentration field afted® seconds on standard mesh= 400 andh, = 256 and
with a dual subgrid in place three times as fine (see Fig. 2ug. glas concentration field is resolved in sharper detail
with less smearing.

the scalar field are present. Solving the scalar on the firmgraishows a significant improvement in resolution. The
R = 2 refinement shows a big improvement in deeper regions wherkase mesh is relatively coarse and the scalar
distribution is maintained better. In the far field< 4) the scalar concentration profiles for the refined céses?2,
R = 3 andR = 5 converge to nearly identical values (Fig. 8a).

The improved resolution becomes even more relevant whespally integrated total scalar concentration in
the domain over time is considered. Fig. 10a shows the totadentration over time fad c= 500. Up to a time of
t = 30 seconds the gas transfer is dominated lfysiion. Subsequently, the instability induces a convedlive that
enhances the mass transfer. The typical mushroom pattam@senetrating the deeper regions of the domain. It is
here where the refined submesh shows a much improved resolitih a continuous increase in the concentration
levels whilst the standard mesh shows a drop in concentrégicels. The drop occurs when the scalar reaches the
region forz < 2.5L (where the mesh becomes significantly coarser) after around5 seconds (Fig. 10a). This
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Figure 8: Comparison of scalar field afteet45 seconds on fferent levels of subgrid mesh refinement. The two
locations are vertical lines at= 2.0L andx = 1.3L along the downwards plumes as seen on Fig. 7a.
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Figure 9: Comparison of scalar field aftes 45 seconds on tferent levels of subgrid mesh refinement. The location
is a horizontal line at various depthacross the downwards plumes as seen on Fig. 7d and 7c.

points out an instlicient resolution of the scalar transport in this region. sTdfiect was not present in the refined
cases (Fig. 10a). The same is found for the transport of thedimensionalized temperaturé (Fig. 10b). The grid
refinement study for the temperature transport shows aaitnénd as seen for the concentration field in Fig. 10b.
On the coarse mesh fluctuations become evident afte50 seconds whereas the refined cases do not exhibit such
temperature fluctuations. Again the results are identmwadll refined casefR= 2, R= 3 andR = 5).

5.4. Comparison to Experiments

In this section we compare the obtained scalar field with abedatory measurements conducted by Jirka et al.
[11] at KIT. In the experiments instantaneous 2D oxygen eatration fields were visualized using a Laser Induced
Fluorescence (LIF) technique. The experiments were paedrin a 50x 50 x 65 cn? tank and the water depth
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Figure 10: Comparison of the total non-dimensional scabacentration and temperatuféover time for diterent
levels of subgrid refinement

was about 42 cm. The surface temperature was 3 °C lower tlealpulk temperature of the water. The equivalent
temperature boundary condition was applied in the numiegicaulations.

Fig. 11 shows a comparison of 2D-LIF images to 2D DNS resutisre a refinement factor & = 2 has been
used. Identical boundary conditions were employed as isithalations described in the beginning of Section 5.

Note that the DNS results show the top section of the domaihtias the same dimension as the LIF-maps.
The actual experimental domain was much larger so the siteda@ttom in these plots can be considered as open
boundaries. For reasons of better comparison the timesealeset td = 0 seconds from the moment when the flow
field started moving which was after a simulation time of 38cs&ls. Though the numerical results are only 2D,
whereas the real problem is of course 3D, a very good quaétagreement with the experiment is observed. Both
the spatial distance between high concentration plumegtandize of the eddies were found to be similar in the
experiment and the simulation. Because of the loffudivity of oxygen in water and the rather low turbulent flowe th
plumes of high oxygen concentration retain their fine strrgg. This means that the steep concentration gradients do
not smear out because of excessive numeri¢alglon. As a result good qualitative agreement between tireernioal
simulations and the experimental data is obtained.

6. Conclusion

To accurately resolve the mass transport for a scalar withdisfusivity on a stretched and staggered mesh,
the fifth-order accurate WENO5 schemes of Liu et al. [13] aadgland Shu [10] was implemented to discretize
the convective terms, while a fourth order accurate ceuisgretization was used for thefilision. The flow field
was approximated by fourth-order accurate central dige@ns for both convection andftlision. Because the
diffusivity of the scalars of interest is up to almost three aa@émagnitude smaller than the moleculafusivity of
the ambient fluid, the resolution requirements for the fpanted scalar are much higher. Hence, to save computing
time, a dual meshing approach was employed in which therstatesport equations were discretized on a finer mesh
than the flow field. The discretization of scalar convectiod diffusion were tested in both 1D and 2D cases. The
1D tests showed that the spatial discretization of the scalavection achieved a second-order accuracy on non-
uniform meshes and a fifth-order accuracy on uniform meshhbge the discretization of the flusive term was
shown to achieve a fourth-order accuracy on stretched rsestm®ugh the WENO5 implementation of Jiang & Shu
[10] shows superior results in the grid refinement testsptiginal scheme of Liu at al. [13] was found to be more
accurate on coarse meshes. Hence, to obtain a satisfaesmiyition of the steep concentration gradients - that will
occur in scalar transport problems with high Schmidt nurabarsing as few grid points as possible, the Liu et al.
implementation was found to be a good choice.
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Figure 11: Comparison of flow structures. High oxygen cotragion plumes of LIF measurements conducted by
Jirka et al. [11] (Fig. 11a) and DNS results (Fig. 11b). Thekdand light colour scaling indicate regions with high
and low scalar concentration, respectively. In both cakessurface temperature was 3°C colder than the bulk
temperature.

For the 2D case a combined active and passive scalar trapspblem was simulated. It was shown that the fifth-
order central upwind method generated wiggles near stesiegits which completely disappeared when using the
WENOS5 schemes. The dual meshing approach showed a sighifigarovement in accuracy of the scalar field reso-
lution even for a moderate refinement by a factor of two. Sgbeet refinements that were carried out using factors
of up to five times only showed marginal further improvementaccuracy. Additionally, a qualitative comparison
of the numerical results to experimentally visualized cxygoncentration fields in water showed similar structures
below the air-water interface even though the numericalikitrons were 2-dimensional.
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