53 research outputs found

    Magnetic reconnection-driven turbulence and turbulent reconnection acceleration

    Full text link
    This paper employs an MHD-PIC method to perform numerical simulations of magnetic reconnection-driven turbulence and turbulent reconnection acceleration of particles. Focusing on the dynamics of the magnetic reconnection, the properties of self-driven turbulence, and the behavior of particle acceleration, we find that: (1) when reaching a statistically steady state of the self-driven turbulence, the magnetic energy is almost released by 50\%, while the kinetic energy of the fluid increases by no more than 15\%. (2) the properties of reconnection-driven turbulence are more complex than the traditional turbulence driven by an external force. (3) the strong magnetic field tends to enhance the turbulent reconnection efficiency to accelerate particles more efficiently, resulting in a hard spectral energy distribution. Our study provides a particular perspective on understanding turbulence properties and turbulent reconnection-accelerated particles.Comment: 12 pages, 10 figures and 1 table. Accepted for publication in Ap

    Source Apportionment of Gaseous and Particulate PAHs from Traffic Emission Using Tunnel Measurements in Shanghai, China

    Get PDF
    Understanding sources and contributions of gaseous and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from traffic in urban areas. On-road sampling campaigns were comprehensively conducted during 2011–2012 in an urban tunnel of Shanghai, China. 2–3 rings PAHs were abundant in the tunnel\u27s gas and particle phases. Diagnostic ratios of PAHs were statistically described; several were significantly different between the gas and particle phases. Principal component analysis (PCA), positive matrix factorization (PMF), bivariate correlation analysis and multiple linear regression analysis (MLRA) were applied to apportion sources of gaseous and particulate PAHs in the tunnel. Main sources of the gaseous PAHs included evaporative emission of fuel, high-temperature and low-temperature combustion of fuel, accounting for 50–51%, 30–36% and 13–20%, respectively. Unburned fuel particles (56.4–78.3%), high-temperature combustion of fuel (9.5–26.1%) and gas-to-particle condensation (12.2–17.5%) were major contributors to the particulate PAHs. The result reflected, to a large extent, PAH emissions from the urban traffic of Shanghai. Improving fuel efficiency of local vehicles will greatly reduce contribution of traffic emission to atmospheric PAHs in urban areas. Source apportionment of PM10 mass was also performed based on the organic component data. The results showed that high-temperature combustion of fuel and gas-to-particle condensation contributed to 15–18% and 7–8% of PM10 mass, respectively, but 55–57% of the particle mass was left unexplained. Although the results from the PCA and PMF models were comparable, the PMF method is recommended for source apportionment of PAHs in real traffic conditions. In addition, the combination of multivariate statistical method and bivariate correlation analysis is a useful tool to comprehensively assess sources of PAHs

    Experimental investigations on emission characteristics of heavy-duty hybrid electric vehicles

    Get PDF
    The emission characteristics under different operating modes (engine mode and hybrid mode) and different test cycles (C-WTVC and CHTC) of a heavy-duty hybrid electric dump truck was investigated on the chassis dynamometer. The emission performance was recorded using Portable Emissions Measurement System (PEMS) and analyzed combined with the characteristic parameters of the test conditions. It is found that the NOx emission under hybrid mode is higher than that under engine mode, while the CO emission under hybrid mode is lower than engine mode. Under engine mode, the NOx emission of CHTC is higher than that of C-WTVC. However, under hybrid mode, the NOx emission of CHTC is lower than C-WTVC. Analysis of CO emission characteristics shows that under engine mode, CO emission is concentrated at low speed and small load condition, while under hybrid mode, CO emission is concentrated at high speed and large load condition

    Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates

    Get PDF
    Experiments were conducted in a newly designed constant volume combustion chamber with a perforated plate by varying the initial conditions. Hydrogen-air mixtures were used and the turbulent flame, shock wave, and the processes of flame-shock interactions were tracked via high-speed Schlieren photography. The effects of hole size and porosities on flame and shock wave propagation, intensity of the shock wave and pressure oscillation in closed combustion chamber were analyzed in detail. The effect of interactions between the turbulent flame and reflected shock or acoustic wave on the turbulent flame propagation was comprehensively studied during the present experiment. The results demonstrated that flame front propagation velocity and pressure oscillation strongly depend on the hole size and porosities of the perforated plate. The flame front propagation velocity in the end gas region increases as hole size increases and porosity decreases. The flame front propagation intensity in the end region of a confined space is strongly relevant to two competing effects: the initial turbulent formation and turbulent flame development. The experimental results indicated that an oscillating flame is associated with both the reflected shock wave and the acoustic wave. Meanwhile, different turbulent flame propagations and combustion modes were observed

    Estimating patient-specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation: Estimating patient-specific and anatomically correct reference model

    Get PDF
    A significant number of patients suffer from craniomaxillofacial (CMF) deformity and require CMF surgery in the United States. The success of CMF surgery depends on not only the surgical techniques but also an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. Currently, the outcome of the surgery is often subjective and highly dependent on surgeon’s experience. In this paper, the authors present an automatic method to estimate an anatomically correct reference shape of jaws for orthognathic surgery, a common type of CMF surgery

    Eagle

    No full text

    Shih k'o-fa

    No full text

    Early Summer

    No full text
    • …
    corecore