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Abstract 

Experiments were conducted in a newly designed constant volume combustion chamber with a 

perforated plate by varying the initial conditions. Hydrogen-air mixtures were used and the turbulent 

flame, shock wave, and the processes of flame-shock interactions were tracked via high-speed Schlieren 

photography. The effects of hole size and porosities on flame and shock wave propagation, intensity of 

the shock wave and pressure oscillation in closed combustion chamber were analyzed in detail. The 

effect of interactions between the turbulent flame and reflected shock or acoustic wave on the turbulent 

flame propagation was comprehensively studied during the present experiment. The results 

demonstrated that flame front propagation velocity and pressure oscillation strongly depend on the hole 

size and porosities of the perforated plate. The flame front propagation velocity in the end gas region 

increases as hole size increases and porosity decreases. The flame front propagation intensity in the end 

region of a confined space is strongly relevant to two competing effects: the initial turbulent formation 

and turbulent flame development. The experimental results indicated that an oscillating flame is 

associated with both the reflected shock wave and the acoustic wave. Meanwhile, different turbulent 

flame propagations and combustion modes were observed. 
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1. Introduction 

The turbulent flame is one of the most interesting parts of combustion science and industry systems. 

Due to its huge complexity and nonlinear combustion features, progress in understanding and predicting 

a turbulent flame is still extremely challenging at present [1-5]. Particularly, in a closed space, such as 

an internal combustion engine and fire safety area, turbulent flame propagation with induced pressure 

oscillation is strongly related to energy efficiency, safety, emissions, etc. The understanding of turbulent 

flame propagation in a confined space is still a vital obstacle for quantitatively understanding and 

predicting the combustion phenomenon, including the knocking combustion in gasoline engines, the 

interaction between the flame and shock/acoustic wave, and the deflagration to detonation transition 

(DDT) [4]. It is well known that flame propagation in a duct filled with obstacles can accelerate to a fast 

flame [4, 6, 7]. Therefore, based on previous studies, a newly designed experimental apparatus is used 

to investigate the turbulent flame propagation process with high-amplitude pressure oscillation in a small 

confined chamber with perforated plate.  

Significant advances have been made over the past years in the understanding of flame propagation 

at the presence of obstacles [8, 9]. A great deal of effort [6-13] has been spent on studying the turbulent 

flame acceleration mechanism in channels equipped obstacles in recent decades. Bychkov et al.[4] noted 

that the flame acceleration in long tubes equipped with obstacles is induced by delayed burning between 

the obstacles. It can generate a powerful jet flow driving an extremely fast flame velocity [4, 14]. In 

addition, the well-known Kelvin–Helmholtz (K–H) and Rayleigh–Taylor (R–T) instabilities also have 

significant contribution to the flame acceleration when the flame is suddenly accelerated over an 

obstacle or through a vent. Previous studies have significantly improved our understanding of the flame 

acceleration process. However, turbulent combustion still remains one of the most intensively studied 

but least understood phenomena in combustion theory [8, 9]. In turbulent flame propagation, it involves 

two mechanisms of turbulent flames, the turbulent flame self-acceleration mechanism [5, 15, 16] and 

interactions between a turbulent flame and shock wave or compression wave (acoustic wave) [7, 14, 17-

20]. A common conclusion is that the self-acceleration of a turbulent flame is related to the intensity of 

hydrodynamic instability as well as that of diffusional-thermal instability with the increase of flame 

surface. The interactions of reflected shocks with a flame or turbulent flame have been widely used to 

investigate flame instabilities transition to turbulence, and most recently, the deflagration to detonation 

transition (DDT) [21]. Furthermore, the transient flame-vortex interaction is the key process in the 



description of an accelerating flame propagation through obstacles. The resulting flame-vortex 

interaction intensifies the rate of flame propagation and pressure rise. For instance, Di Sarli et al. [22-

27] well and comprehensively investigated the unsteady coupling of the propagating flame and the flow 

field at the wake of obstacles by means of both particle image velocimetry (PIV) and large eddy 

simulation (LES). They clearly demonstrated a satisfactory agreement in terms of shape of the 

accelerating flame propagation, flame arrival times, spatial profile of the flame speed, pressure time 

history, and velocity vector fields. The flame- vortex or flow interaction finally improved the flame 

acceleration.  

Based on the above theory fundamentals including the flame acceleration and flame-shock 

interactions, a number of experimental studies [12, 13, 28-30] have demonstrated the influence of 

obstacle spacing or scale on the flame propagation process. The work by Ciccarelli et al. [31] 

demonstrated that the detonation initiation due to shock reflection is roughly the same for the different 

blockage ratio (BR) reflector perforated plates tested. But, the work was carried out in a long detonation 

tube. Another work [30] was performed to study the effect of obstacle size and spacing on the initial 

stage of flame acceleration in a rough tube. The results presented that for the lower blockage ratio plates, 

the plate size did not have much effect on the flame acceleration. However, for a higher BR, the plate 

size had a strong effect on the run up distance corresponding to the spacing of the perforated plates. A 

serial of further works were conducted by Ciccarelli et al. [32, 33].  

In other work by Abdulmajid [28], the effects of obstacle scale with the same BR on the flame 

speed and overpressure were investigated. The obstacle with two flat bars obtained maximum 

overpressure compared with that with four flat bars. Moreover, several studies regarding the mechanism 

of detonation attenuation by a porous medium were carried out. A novel mechanism was identified, 

where each shock reflection from a porous medium gives rise to significant enhancement of the gas 

reactivity. Recently, similar studies were performed. A flame passing through multiple cylindrical 

obstacles could generate high speed deflagrations at different obstacle configurations and blockage 

ratios.  

Hall et al. [34] studied the effects of the number and location of solid obstacles on the rate of 

propagation of turbulent premixed flames. It is found that while the peak overpressure increases with 

increasing number of grids or baffle plates. After this work, Masri et al.[35] performed a comparative 



study of turbulent premixed flames propagating past repeated obstacles. They found that for all fuels the 

peak pressure as well as the rate change of pressure increases with increasing blockage ratio (BR) and 

with decreasing separation between successive baffles. But, there works more focus on the pressure 

evolution. Maeda et al. [36] investigated the deflagration-to-detonation transition in a channel with 

different heights of obstacles. It is found that the initial flame acceleration showed almost the same 

pattern for different heights of obstacles. But, in the downstream region the flame front velocity for 

highest height reaches the sound speed. Furthermore, Valiev et al. [37] provided details of the theory 

and numerical modeling of the flame acceleration for various blockage ratios and various spacing 

between the obstacles in a channel with one open end and one close end. Gamezo et al.[38] demonstrated 

the competing effects of high blockage ratio: larger obstacles promote non-uniform flow and they also 

weaken shocks diffracting over large obstacles. Consequently, the DDT occurrence is affected. Similarly, 

Goodwin et al. [39] adopted the numerical simulations to investigate the effect of decreasing blockage 

ratio on DDT in an infinitely long rectangular channel. They pointed out different blockage ratios have 

different mechanisms and in a certain range the DDT can occur. 

Although significant effort has been devoted to the flame acceleration and detonations combustion 

of a flame propagating through repeated obstacles or porous media, previous experimental studies did 

not completely address the turbulent flame propagation mechanism with high pressure oscillation in a 

confined space, especially a controlled turbulent flame. This problem is, of course, of prime importance 

to the design of engines, such as knock suppression in spark ignition engine. Furthermore, the interaction 

between a flame and shock wave is always accompanied by acoustic oscillations, which can lead to 

significant overpressures and pressure oscillations within a confined space [11, 40]. However, the 

amplitude of pressure oscillations or overpressures is very small. For a strong pressure oscillation, it has 

a strong damaging effect on the device. There is still a lack of detailed studies regarding strong pressure 

oscillation, which is similar to the knock phenomenon in engines. Overall, the effect of a reflected shock 

wave on the flame propagation and pressure oscillation in the end region of confined space has not been 

comprehensively discussed. 

The present study focuses on turbulent flame propagation controlled by an perforated plate with 

different hole sizes and porosities in confined space. The interactions between turbulent flame and 

compression wave including visible shock wave and invisible acoustic wave are investigated. 

Meanwhile, the different combustion phenomena and relationships of turbulent flame propagation and 



pressure oscillation are demonstrated in this work. In this work, a newly designed experimental 

apparatus equipped with a perforated plate, which employed the technique of fast flame generated by a 

flame passing through the orifice plate and the theory of self-accelerated turbulent flame, was used. 

Different intensities of the turbulent flame and shock wave can be generated by effectively controlling 

the hole sizes and porosities. The interaction between flame front and shock wave was imaged via high-

speed Schlieren photography. The effects of a reflected shock wave on the combustion modes and, 

consequently, on the pressure oscillation were studied in detail. A stoichiometric hydrogen-air mixture 

was used as the test fuel because of its high flame propagation velocity and the formation of an obvious 

shock wave ahead of the flame front, which can be used to investigate the interaction of the flame-shock 

wave. The present study will provide a new insight into not only the knock phenomenon in spark ignition 

gasoline engines, but also the DDT and pulse detonation phenomenon in engines.  

The paper is organized as follows: the experimental setup and conditions are briefly discussed in 

Section 2. The results and discussion are presented in Section 3, involving the effects of different hole 

sizes and porosities. In Section 4 the specific combustion modes of normal combustion and reciprocating 

combustion as well as the analysis of pressure oscillations were shown. Finally, this study’s conclusions 

are presented in the last section.  

2. Experimental Setup and Conditions 

2.1 Experimental setup 

The experiments apparatus is same with our previous study [41], thus the detailed information is 

not shown here due to the limited length of paper. The experimental apparatus was composed of the 

constant volume combustion vessel, the orifice plate, the intake and exhaust pipe system, the ignition 

system, the heating system, time synchronizing system, image acquisition system, and in-cylinder 

pressure acquisition system. 

In the study, two arrangements of the experimental apparatus were applied for different purposes. 

The schematic of the present experiment was shown in Fig. 1. Setup A: the perforated plate was placed 

in the middle of the combustion chamber 115 mm away from the right wall, and the spark plug was 

mounted in the left wall. Thus, the combustion phenomena in the end gas could be observed. Setup B: 

the perforated plate was mounted 35 mm away from the right wall, and the spark plug was mounted in 



the right wall. Note that the position of perforated plate was located at the optical window, which can 

be used to observe flame acceleration of the laminar flame across the perforated plate. The perforated 

plate was made using a 3 mm thick stainless steel plate. There were several holes on it depending on the 

porosity, distributed in rectangular form. 

2.2 Experimental conditions 

Initially, the combustion chamber was heated up to the target temperature by the temperature 

control system. The H2-air mixture was obtained via the partial pressure method. The test conditions are 

shown in Table 1. Before igniting, the H2 and air mixture was initially premixed for 2 minutes to achieve 

a homogeneous mixture at the target condition. After that, the spark igniter, pressure recorder and high-

speed digital video camera were triggered simultaneously by the synchronization. In this study, the flame 

front velocity or tip velocity was calculated based on the time derivation of the flame tip position, 

distance from the ignition point. A velocity point is calculated from the difference in the centerline flame 

position between consecutive frames. And this was called flame front velocity in the text. The flame 

front velocity is an intrinsic property of a premixed flame, which was widely used in the previous study 

of the flame acceleration and transition to detonation. And a brief review on the flame front velocity 

could be obtained in our previous study [41]. Based on a framing rate of 160,000 frames per second and 

a resolution of 0.18 mm/pixel, the uncertainty is 28 m/s.  

Table 1. Experimental conditions 

Experiment 
setup Hole size /mm Porosity Equivalence 

ratio 

A/115 mm 

1.5 12% 

1 

2 12% 
2.5 12% 

3 

6% 
12% 
18% 
24% 

4 12% 
5 12% 
6 12% 

B/35 mm 3 12% 

 

 



2.3 Repeatability test 

To verify the repeatability of the test device, three cases of turbulent flame position versus time 

conducted in setup A under the same conditions (hole size 3 mm, porosity 12%, initial pressure 1 bar) 

were considered, as shown in Fig. 2. As shown in the figure, the trends of flame trajectory of the three 

curves are consistent with each other. The relative error does not exceed 5% and is acceptable for high-

speed turbulent flame propagation. Thus, the experimental setup in the present study is reliable. 

2.4 Definition of flame front velocity 

In this study, the flame front velocity was calculated based on the time derivation of the flame tip 

position, distance from the ignition point. A velocity point is calculated from the difference in the 

centerline flame position between consecutive frames. In our previous work [41], a detailed 

investigation regarding the definition of flame front velocity was reviewed. 

2.5 The process of flame acceleration 

The development of the flame when it passed through the obstacle was demonstrated in Fig. 3. It 

can be seen that the development of the flame in the present study was divided into three obvious stages: 

laminar flame propagation, jet flame formation and turbulent flame development. The laminar flame 

was compressed by the perforated plate and became a flat flame surface, which caused a clearly delayed 

burning that occurred before the flame passed through the perforated plate. As shown in Fig. 4, the 

laminar flame front velocity decreased gradually before passing through the perforated plate. Due to the 

expansion of the burned gas, a flow was formed downstream the flame. After the flow passed through 

the perforated plate, fast jet flow with a mean velocity of 8 m/s was induced as shown in Fig. 3. And 

then, the flame was entrained by the fast jet flows through the perforated plate. Driven by the jet flow, 

the flame accelerated rapidly after passing through the perforated plate. The mean flame front velocity 

accelerated from 21.8 m/s to 108.2 m/s after passing through the perforated plate. And due to the faster 

expansion of the burned product, the jet flow gained a faster velocity of 44.3 m/s. As shown in the Fig. 

4, during the jet flame stage, the jet flame rapidly after the perforated plate decreased in the terms of the 

fluid dynamic mechanism that the velocity of a fluid passing through a small space (in orifice plate) 

with a relatively larger pressure to a large space with relatively smaller pressure will decrease, which is 

likely the mechanism of Venturi effect. Consequently, the gas flow velocity decreased after the 

perforated plate according to previous work[41], which contributes to the flame front velocity decrease. 

Finally, the turbulent flame was formed due to the jet flame merging together through the flame-flame 



interaction. Meanwhile, a slight increase of flame front velocity was observed due to the increased flame 

surface. The present experiment extended the theory previously made by Bychkov[4] from the numerical 

study and theory analysis. It was noted that in the Bychkov work[4], ultrafast flame acceleration in 

obstructed channels indicates laminar flame acceleration, but in this work, the jet flame was formed 

after the laminar flame passed through the perforated plate; subsequently, the turbulent flame was 

generated. Furthermore, for jet flame formation and development stage, toroidal vortices are generated 

behind the obstacle at the wake of a circular orifice as the flame passing through the orifice and 

subsequently the resulting flame-vortex interaction intensifies the rate of flame propagation and the 

pressure rise, which are clearly demonstrated by the experimental and LES results by Di Sarli [22-24, 

26]. In the turbulent flame development, as shown in Fig. 4, the turbulent flame front velocity slightly 

increased due to the turbulent self-acceleration feature with the wrinkled flame surface[15, 16]. 

Next, the flame propagation front velocity, shock wave propagation speed, the pressure oscillation 

and flame-shock interaction were investigated by changing hole size and porosity of the perforated plate. 

3 Results and Discussion 

3.1 Effect of hole size 

Figure 5 shows sequence of photography of flame and shock wave in the end gas of the chamber 

under conditions of porosity of 12% and initial pressure of 2 bar. The results were obtained through the 

experimental setup A using perforated plate of different hole sizes. At every hole size, five typical 

chronological Schlieren images were chosen and listed as a column. Noted that the right edge of each 

image is the combustion chamber wall. For hole sizes of 2 mm, 2.5 mm, 3 mm, 4 mm and 5 mm, a clear 

shock wave was observed ahead of the flame front induced by the turbulent flame acceleration. As the 

hole size increased, the distance between flame front and shock wave decreased, as shown in the first 

picture of each column. The largest separation between the lead shock wave and the turbulent flame 

brush occurred for the smallest hole size of 2 mm in this work. When the shock wave reached the end 

of the combustion chamber, a reflected shock wave appeared. The reflected shock wave can be found 

from the third-row images in Fig. 5. Regarding the perforated plate with a hole size of 6 mm, no visible 

shock wave formed ahead of the flame front. However, a reflected shock wave can be observed after the 

wall reflection at 4.74 ms, owing to the fast turbulent flame in the end region of the confined space, 

which will be discussed below. 



Detailed analysis of the flame-shock wave interaction was carried out for the perforated plate with 

a hole size of 2 mm as example, as shown in Fig. 5. An obvious shock wave with a speed of 

approximately 500 m/s was formed ahead of the accelerating turbulent flame at 4.53 ms. After the shock 

wave reached the end wall in the confined space, an obvious reflected shock wave was generated at 4.58 

ms. Subsequently, the clear interaction between flame and reflected shock wave occurred at 4.64 ms. 

Then the flame front was pushed back and propagated reversely due to the impact of the reflected shock 

wave and flow field. It was shown that the flame oscillating propagation was observed in the experiment. 

This can be explained as follows: the flame oscillation is caused by the flow field behind the shock wave 

as it passes the flame. The shock wave acts as a source of disturbance, leading to velocity change and 

compression effect on the unburned mixture. This leads to an oscillating combustion in the end region 

of the combustion chamber, which is the mechanism of flame-shock wave interaction in a confined 

space. The flame-shock interaction decelerated the flame front velocity and delayed the time when the 

flame front reached the end wall. Therefore, the end unburned gas would be heated for longer time and 

more likely to auto-ignite. 

Figure 6 shows the flame front velocity as a function of the position in the end region of the 

combustion chamber equipped with a perforated plate of different hole sizes, under conditions of 

porosity of 12% and initial pressures of 2 bar. Note that the observation window is located at the end 

region of the combustion chamber, as shown in Fig. 1. The flame front velocity is calculated from the 

derivative of the flame front location. The position of 78 mm represents the end wall of the combustion 

chamber; the zero point represents the flame just entering the observation area at the horizontal axis in 

Fig. 6. Overall, the flame front velocity increased with the increase of the hole size. At the position of 

starting point zero, the perforated plate with a hole size of 6 mm had the largest flame front velocity of 

approximately 450 m/s at an initial pressure of 2 bar. However, the flame front velocity at the hole size 

of 2 mm was just 75 m/s at an initial pressure of 2 bar. The tendency of the turbulent flame propagation 

follows the hole size at a constant porosity as shown in Fig. 6. Because flame propagation after the larger 

hole size leads to produces turbulent vortex with a larger eddy structure. As shown in [22-27], turbulent 

vortex structures behind the perforated plate were observed as jet flame was generated. In [33], they 

presented that the vortices could quickly reach the channel top and bottom wall and the vortex zones 

burn out quicker for the larger hole size or larger space. In the later stage of flame propagation, the larger 

eddy turbulence could entangle much more unburnt mixture increasing the burning rate and promoting 



flame acceleration.  

The flame front velocities for perforated plates with large hole sizes of 5 mm and 6 mm decreased 

in the range of 0 to 30 mm and increased in the range of 30 to 45 mm at an initial pressure of 2 bar in 

the end region of the confined combustion chamber. Smaller hole sizes of 2 mm, 3 mm and 4 mm showed 

only an increasing trend before the flame front velocity reduced rapidly at an initial pressure of 2 bar. 

However, the flame front velocity rapidly decreased in the end-gas region approximately from 45 mm 

to 78 mm for all the cases. As hole size decreased, the beginning of the flame front velocity drop was 

advanced. This was consistent with the phenomenon demonstrated in Fig. 5. Meanwhile, as the hole size 

decreased, the distance between flame front and shock wave increased, as shown in Fig. 4. It was 

concluded that the flame-shock wave interaction occurred early and the flame front velocity began to 

reduce in advance. Because of the reverse flow field induced by the reflected shock wave and acoustic 

wave, the flame front velocity in each case decreased rapidly. For the flame approaching the end of the 

combustion chamber, the flame front velocity was close to zero and the flame even propagated reversely. 

Similarly, the strong oscillation in flame front velocity lead by the pressure wave-induced backward and 

forward flow in confined space was well presented in DNS results by Chen [42] and in experiments by 

Xiao[11]. Furthermore, a simply 1D simulation is carried out to explain the flame oscillation 

phenomenon caused by flame-acoustic wave. The relevant results were shown in Appendix A. In the 

present work, a controlled turbulent flame was generated by changing the hole size of the perforated 

plate, which is of great help to the investigation of flame acceleration, self-acceleration of turbulent 

flames and interactions between a flame and shock wave or acoustic wave. 

Figure 7 shows the cylinder pressure versus time with different hole sizes, under conditions of 

porosity of 12% and initial pressure of 2 bar. In the experiment, the pressure transducer (Kistler 6113B 

at 100 KHz) was mounted on the top wall of the combustion chamber at a distance of 35 mm from the 

end of the combustion chamber. The upper curves in each subfigure present the original tested cylinder 

pressure, while the one below shows the pressure high-pass filtered by 20 KHz. The filtered pressure 

can be used to demonstrate the pressure fluctuation amplitude. As seen from Fig. 7, the peak of the 

pressure oscillation increases with the increase of hole size and the peak could reach 2.375 MPa at the 

hole size of 6 mm. This indicates that the intensity of the pressure oscillation is strongly relevant to the 

turbulent combustion with high turbulent flame front velocity in the end region of the confined 

combustion chamber. It can also be seen that the high-pressure oscillation also has high oscillation 



frequency.  

Figure 8 shows the shock wave velocity with the perforated plate of different hole sizes and under 

conditions of porosity of 12% and initial pressure of 2 bar. Note that the positive values represent the 

forward propagating shock wave and the negative ones show the shock wave reflected by the end wall 

of the combustion chamber. Briefly, as shown in Fig. 8, the forward propagating shock waves maintained 

their velocity at approximately 500-600 m/s and there was no significant difference as the hole sizes 

varied. Note that the forward propagating shock wave was not formed at the large hole size of 6 mm. 

However, apparent differences for the reflected shock wave evolution among the hole sizes were 

observed, as shown in Fig. 8. After reflection, the shock wave had a similar velocity of approximately 

480 m/s at the position of 74 mm. With the propagation of the reflected shock wave, the differences 

between shock wave velocities appeared for different hole sizes. Note that the reflected shock wave 

decays faster with larger hole size. This phenomenon is opposite to the trend of flame front velocity in 

Fig. 6 in the end region of the combustion chamber. This is because the reflected shock wave and the 

turbulent flame in the end region of the chamber have opposite propagating directions. The relationship 

of mutual inhibition competition will occur between them. The turbulent flame weakened the reflected 

shock waves; thus, reflected shock waves prevented the turbulent flame propagation. Therefore, in the 

turbulent flame-shock interactions, the reflected shock wave velocity reduced due to the flow ahead of 

the flame. As the shock wave passed through the flame, the flame was pushed back. And due to R-M 

instability, the turbulent flame surface increased and accelerated after the shock wave passed by. The 

phenomenon was obviously observed in the present experiment. 

3.2 Effect of porosity  

Figure 9 shows sequence of photography of the flame and shock wave in the end region of the 

chamber equipped with a perforated plate of different porosities. The experiments were carried out under 

conditions of hole size of 3 mm and initial pressure of 3 bar. It can be seen that a shock wave was 

generated ahead of the turbulent flame front at porosities of 6% and 12%. At the porosity of 6%, there 

were several compression waves ahead of the flame shown by the Schlieren photography. This is caused 

by the strong acceleration effects. The turbulent flame interacted with the shock reflected from the end 

wall and the shock-flame interactions further distorted and wrinkled the flame based on the RM 

instability, which also enhanced the small-scale turbulence and the surface area of the flame and 



consequently increased the energy release rate in the combustion chamber. By comparing the timing of 

the turbulent flame entering the observation window as shown in Fig. 9, an earlier timing was found for 

the smaller porosity. Note that the bright zone observed in Fig. 9 is located at the burnt regime, and it 

should be as a strong burning because of no significant pressure increase, and flame acceleration and 

propagation, which is not similar to our previous work regarding autoignition with the flame acceleration 

and very high pressure oscillation[43].  

It can also be concluded that for a smaller porosity, the flame front configuration or flamelet can 

be clearly distinguished, particularly at the porosity of 6%. Note that Fig. 9 not only indicates the flame-

shock interaction but also demonstrates the flame-acoustic interaction clearly. There were many studies 

regarding the flame-acoustic interaction based on theory, numerical and experimental methods[11, 18]. 

For these studies, the flame is mostly the laminar flame. However, the turbulent flame-acoustic 

interaction was clearly demonstrated by the present experiment at the porosity of 24%. The flame front 

velocity began decreasing at t=5.02 ms in Fig. 8. The flame front only moved forward a little distance 

for approximately 0.2 ms from 5.02 ms to 5.23 ms. However, the flame did not move forward first and 

slightly moved backward, which was observed from 5.23 ms to 5.38 ms. Subsequently, the flame 

accelerated and moved forward at a relatively small velocity again. Finally, a second backward motion 

of the flame was observed at approximately 5.65 ms. Note that an obvious flame front was generated at 

5.65 ms. This is possibly because the flame front velocity is very low, and the combustion at the burnt 

region behind the flame front has enough time to finish. Consequently, the fuel-air mixture has been 

fully consumed sufficiently far from the flame front for 24% porosity. After the flame-acoustic 

interaction, the turbulent front became more complicated again at 6.73 ms. The evolution of the flame 

front velocity involving the flame-acoustic interaction is discussed later.  

It can be concluded from Figs. 5 and 9 that the present experiments could yield both the turbulent 

flame-shock interaction and turbulent flame-acoustic or pressure wave interaction by controlling the 

perforated plate parameters. 

Figure 10 shows the flame front position versus time in the end region of the combustion chamber 

with a perforated plate of various porosities, under conditions of hole size of 3 mm, initial pressure of 3 

bar. As shown in Fig. 10, the smaller the porosity, the more advanced the flame that enters the 

observation window. The gradient of position versus time for smaller porosity indicates that it could 



generate a faster flame front velocity. At the initial stage, the evolution of the flame front position is 

approximately linear with time. This indicates that the flame front velocity retained relatively constant. 

In the later stage, an oscillating propagation of the flame was formed due to the impact of the shock 

wave or pressure wave. Note that with the increase of porosity, flame pulsation occurs in advance and 

the oscillation frequency increases. The flame front velocity evolutions with various porosities are 

presented in Fig.11 

Figure 11 shows the flame front velocity versus time in the end region of the combustion chamber 

equipped with a perforated plate of different porosities. The experiments were carried out at conditions 

of hole size of 3 mm and initial pressure of 3 bar. It can be concluded that the flame front velocity 

increases as the porosity decreases. At the beginning stage of the flame entering the observation window, 

the flame front velocity maintained constant velocity for four porosities, which was consistent with the 

results shown in Fig. 10. Meanwhile, the perforated plate with the smallest porosity of 6% had the largest 

flame front velocity (roughly 400 m/s) at initial pressure of 3 bar. The flame front velocity for a porosity 

of 24% was just 180 m/s. As the flame entered the region near the end wall, flame front velocity began 

to reduce rapidly. As porosity increased, the onset of the decrease of flame front velocity moved forward. 

The phenomenon is also clearly demonstrated in Fig. 10. As the porosity increases, the transmittance of 

the perforated plate increases. This allows intense flow and heat exchange between two sides of the 

perforated plate. Consequently, the flame velocities for smaller porosities were relatively larger. Thus, 

the beginning location at which the flame front velocity starts declining moved towards the end wall for 

small porosities. Actually, the present work is not different from the previous studies[7], in which the 

magnitude of shock and flame centerline velocity in tests with larger obstacles was lower than that with 

smaller obstacles. The possible explanation for the present work is that the small porosity may induce a 

strong jet flame at a constant hole size due to much confined effect on the initial turbulent formation. 

Meanwhile, the small eddy turbulence forms early. In this situation, the limited effect and small eddy 

turbulence become noticeable and control the turbulent flame acceleration. The conclusion is consistent 

with the theory analysis[44]. Moreover, the smaller porosity means the much more holes in perforated 

plate and could produce more turbulent vortex structures behind the perforated plate as jet flame is 

generated. The works focused on the transient flame-turbulence/vortex interaction by Di Sarli[22-27] 

can prove that the turbulent vortex distorts the flame and subsequently increases the flame surface area 

and burning rate. Note that the high rate of pressure rise occurs due to the intense turbulent combustion, 



which will be discussed later. 

Figure 12 shows the cylinder pressure under conditions of hole size of 3 mm and initial pressure of 

3 bar. The pressure transducer was located on the top wall at a distance of 35 mm to the right wall. As 

shown in Fig. 12, the peak value of the pressure decreased as porosity increased; the peak value was up 

to 2.7 MPa for a porosity of 6%. Similarly, the amplitude of the pressure oscillation also decreased as 

porosity increased and the beginning of pressure oscillation occurred earlier with the decrease of porosity. 

This suggests that the smaller the porosity, the greater the turbulent combustion. This increased the flame 

front velocity in the end region of the combustion chamber, i.e., the burning rate increased. Therefore, 

the peak value and the amplitude of the pressure for small porosity were larger than those for large 

porosity. Note that for the porosity of 24% with the flame-acoustic wave or compression wave, flame-

acoustic resonance was not observed in this work because of the complex turbulent combustion with 

complicated pressure waves from different directions in the confined space. Referring to the turbulent 

flame evolution images in Fig. 9, the rising timing of pressure followed the arrival of the turbulent flame 

and compression wave; subsequently, the pressure oscillation was controlled by the turbulent 

combustion and its interaction with the pressure wave or shock wave. The experiment showed that 

turbulent flame-shock interactions and strong turbulent combustion resulted in a strong pressure 

oscillation. The present pressure oscillation amplitude generated by the turbulent combustion in the 

present small confined space is greater than that which occurred in the tube with porous media[45].  

Figure 13 shows the shock wave velocity as a function of position under conditions of hole size of 

3 mm and initial pressure of 3 bar. Note that in this work the shock wave was generated at only two 

smaller porosities due to larger turbulent flame front velocity, as shown in Fig. 9. It can be seen that 

when the porosity of the perforated plate was up to 12%, the incident shock wave was observed first at 

the position of 14 mm and the shock velocity was approximately 590 m/s. For a porosity of 6%, the 

velocity of the incident shock wave was slightly smaller (approximately 500 m/s) and was observed 

later (at 45 mm). The forward propagating shock wave was not formed at larger porosities of 18% and 

24%. After reflection, the reflected shock velocities of porosities of 6% and 12% were 400 m/s and 450 

m/s at 75 mm, respectively. With the development of the reflected shock wave, the velocity of the 

reflected shock decayed to 300 m/s. As mentioned above, the velocity of reflected shock wave was 

strongly related to the turbulent flame front velocity. Therefore, the velocity of the reflected shock wave 

at a porosity of 6% was smaller than that at a porosity of 12%. Note that the turbulent flame-shock wave 



interactions become important for the turbulent flame propagation and unburned mixture 

thermodynamic states in the end region of the confined space, which may induce the end-gas 

autoignition at a certain condition. 

4. Flame-shock wave interaction-oscillating combustion 

Figure 14 illustrates sequence of photography of flame and shock wave in the end region of the 

combustion region under the conditions of hole size of 2.5 mm, porosity of 12% and initial pressure of 

3 bar. An obvious shock wave with a speed of approximately 500 m/s was observed ahead of the 

accelerating turbulent flame, as shown in Fig. 14 at 4.775 ms. As the shock wave reached the end wall 

of the combustion chamber at approximately 4.806 ms, as shown in Fig. 14, a reflected shock wave was 

clearly generated at 4.825 ms. The reflected shock wave touched the turbulent flame at 4.888 ms and 

there were some disturbance waves behind the reflected shock. Consequently, the flame front was 

pushed back and spread reversely at 5.063 ms. Thus, the oscillating velocity of the turbulent flame was 

generated in the end gas region. Based on Taylor instability theory, Markstein[46] suggested that this 

flame inversion is caused by the velocity field (drastic velocity decrease) behind the shock wave as it 

passes the flame. A drastic change in the unburned gas velocity is produced by the shock wave effect, 

causing violent velocity decrease and reverse flow in the unburned region. The shock wave acts as a 

source of disturbance, leading to velocity change in the unburned mixture. 

Shown in Fig. 15 are flame front trajectory, shock wave trajectory and pressure oscillation under 

conditions of hole size of 2.5 mm, porosity of 12%, and initial pressure of 3 bar. The velocities of the 

shock wave and flame versus time are plotted in Fig. 16. As shown, the trajectory of flame propagation 

is related to the trajectory of shock wave development. It can be found that the relationship of the 

location of the forward shock wave with a velocity of approximately 550 m/s and time was almost linear. 

For the shock reflection, the velocity of the reflected shock was reduced to approximately 460 m/s and 

then decreased with time as shown in Fig. 16. This is because the reflected shock wave is hindered by 

the gas compression effect induced by flame acceleration in front of the accelerating turbulent flame. 

Note that the flame-shock interaction makes the velocity decrease for both the shock wave and turbulent 

flame. The reflected shock velocity slowed down to approximately 290 m/s as it contacted the flame 

front at point D, as shown in Fig. 15. The relationship between pressure oscillation and shock wave is 

also presented in Fig. 15. It was found that the two peaks of pressure oscillation tested by the pressure 



transducer at the two points A and C in Fig. 15 were induced by the shock wave.  

As the flame and shock wave interaction occurred, the leading reflected shock further pushed the 

turbulent flame brush back decreasing the flame front velocity; subsequently, the flame moved backward 

due to the effect of a series of distorted compression waves, as shown in Fig. 16. Note that the negative 

flame front velocity indicated that the flame propagates reversely because the reflected shock wave was 

strong enough to push the flame back. During the flame-shock interaction, a pressure oscillation with 

maximum amplitude of 1.3 MPa was generated. After that, turbulent flame front velocity began to 

increase, with the wrinkled flame surface increasing the flame surface area. As comparison to the 

oscillating combustion, the normal combustion phenomenon can be found in Supplemental material. 

5. Conclusions 

In this work, the phenomenon of turbulent flame formation, pressure oscillation and flame-shock 

interactions for different parameters was comprehensively investigated in a newly designed confined 

chamber equipped with a perforated plate. The interaction of flame front and shock wave was imaged 

via high-speed Schlieren photography. In this work, three types of flame propagation including laminar 

flame, jet flame and turbulent flame, were observed. The different propagation speeds of the turbulent 

flame and shock wave could be obtained by controlling the hole sizes and porosities.  

According to the current study, a controlled turbulent flame can be generated in our experiments. 

The intensity of flame front velocity and pressure oscillation depends on the hole size and porosities of 

the perforated plate. As the hole size increases, the distance between flame front and shock wave 

decreases. Meanwhile, the flame front velocity increases as the hole size increases. However, as hole 

size decreases, the beginning of flame front velocity reduce is advanced. The intensities of pressure 

oscillation and the reflected shock wave are related to the combustion intensity or flame front velocity. 

The shock reflection intensity is the opposite of the turbulent flame front velocity. In fact, the flame 

front velocity in the end region of a confined space in this work is strongly related to two competing 

effects: the initial turbulent formation due to confined effects and turbulent flame development with 

larger eddy turbulence. A more in-depth study will be carried out in our future work. 

The experiments suggest that an oscillating flame is associated with both the reflected shock wave 

and the acoustic wave. For the case without a visible shock wave, the flame front velocity also oscillates 



in the end gas region and the velocity reduces rapidly as the flame enters the observation window. Note 

that the flame oscillation was caused by the acoustic wave. However, an apparent flame-shock wave 

interaction can be found in this work. An obvious shock wave with a speed of approximately 500 m/s 

formed ahead of the accelerating turbulent flame. Meanwhile, the relationships of flame front velocity, 

pressure oscillation and shock wave were clearly demonstrated by the present experiment. 

In summary, it can be concluded that the pressure oscillation in a combustion chamber is 

determined by the turbulent flame front velocity in the end region in the present work. In the newly 

designed experiment, three different turbulent flame propagation and combustion modes were observed 

by changing the hole size and porosity of the perforated plate: the weak pulsation propagation of a 

turbulent flame due to the flame-acoustic wave interactions, the pulsation propagation of a turbulent 

flame with a reflected shock wave, and the strong pulsation propagation of a turbulent flame with 

backward propagation with a reflected shock wave.   
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Appendix A：Flame/Flow-Acoustic/Shock Wave Interactions 

A1 Model setup 

The objective of this section is to simply explain the experimental results in the present work. 

Therefore, A one dimension (1D) simulation of flame/flow-acoustic/shock wave interaction in a closed 

chamber has been carried out, with detailed chemistry and transport of H2-O2-Ar mixture. And three 

cases with different initial conditions are investigated in present work, where nonreacting flow-shock 

wave, flame-acoustic wave and flame-shock wave are involved. Taking the case of flame-acoustic wave 

as an example to introduce the computational domain here, is shown in Fig. A1. The domain is divided 

into two parts, initialization zone and propagation zone. In this case, the initial pressure is uniformly 

distributed in the whole domain. The initial temperature is uniformly distributed in the propagation zone 

while it is linearly distributed from 1800 K to 300 K in the initialization zone. And the initial flow 

velocity is zero everywhere. Both the right and left boundary conditions are reflective. The flame is 

initialized by the hot kernel in the initialization zone and propagates towards the right boundary. It 

should be noted that different initial distributions in pressure and temperature in the domain are adopted 

in order to lead to different phenomena, and the detailed setup is listed in Table.A1. The similar model 

setup can be found in [47-48] 

Table A1.  Initial conditions of different cases 

Cases 
Temperature(K) Pressure(atm) Mole 

fraction 
Chamber 
Length(cm) Initialization Propagation Initialization Propagation 

1.Non-
reacting 
flow-
shock  

300 300 7 0.3 Pure Ar 4 

2.Flame-
shock 
wave 

1800, 
uniformly 

300 1,3 1 
H2:O2:Ar 
2:1:3.76 

4 

3.Flame-
acoustic 
wave 

1800-300, 
linearly 

300 0.7 0.7 3 

 

A2 Numerical methodology 



The program AMROC (Adaptive Mesh Refinement in Object-oriented C++), a freely available 

dimension-independent mesh adaptation framework for time-explicit Cartesian finite volume methods 

on distributed memory machines[49], is utilized in this work, with unsteady reactive compressible NS 

equations as governing equations. The hydrodynamic solution process in AMROC is divided into the 

two steps of numerical flux calculation and reconstruction. And the first-order accurate Godunov 

splitting is adopted to decouple the stiff reaction terms and hydrodynamic transport numerically. A 

hybrid Roe-HLL Riemann solver is used to construct the inter-cell numerical upwind fluxes while the 

Minmod limiter with MUSCL reconstruction is applied to construct a second-order method in space. 

The MUSCL-Hancock technique is adopted for second-order accurate time integration. Moreover, the 

adaptive mesh refinement is used to guarantee adequate numerical resolutions for the propagating flame 

front and waves. And the max level is five with the finest mesh of 10 μm. 

A3  Case 1 

In the case of nonreacting flow-shock wave, the pressure, density and flow velocity are tracked at 

the position of 2.5 cm (called monitoring point in the following), and the time histories of these 

quantities are shown in Fig. A2. As can be seen, when the shock arrives at the monitoring point from 

left to right at about 40 μs, there is abrupt increase in all the pressure, density and flow velocity. 

Especially, the flow velocity reaches up to nearly 300 m/s while the initial value is 0 m/s. Then they 

decrease gradually as the shock leaves the point. After the shock reflects at the right boundary, it passes 

through the monitoring point again at 104 μs, which makes the density and pressure increase and 

reverses the flow velocity. It should be noted that the reflected shock wave is weaker than before, 

because the amplitudes of the pressure and density rise are both smaller than that at the first time as well 

as flow velocity. 

A4  Case 2 

In the case of flame-shock wave, the shock wave can be seen after the flame starts to propagate 

from left to right, as shown in Fig. A3. And the flame is not coupled with the shock wave, because the 

velocity of latter is much faster than that of the former. Then the shock wave reflects at the right 

boundary (from line#3 to line #4) and moves forward to the flame rapidly. Eventually, the shock wave 

comes into contact with the flame at 192μs (line #6), and even pushes the flame backwards from line#6 

to line#7. After that, the shock wave reflects once more at the left boundary and catches up with the 



flame (line#8). They meet each other again and again when the flame propagates to the right boundary, 

which causes the oscillation of the flame velocity, as shown in Fig. A4. In this work, the flame front Xf 

is defined as the position with local peak heat release rate and the flame speed is S=dXf /dt. The 

oscillation of the flame velocity is because that the velocity of flow where the flame locates is influenced 

by the shock wave as discussed in case 1. It can be further confirmed in Fig. A4, which shows that the 

oscillation tendency of flame front velocity is almost consistent with that of flow velocity. The maximum 

oscillation amplitude of flame speed is 102 m/s. In addition, the burning velocity is generally increased 

because the temperature rises in the chamber. Note that , there are several different ways to define the 

turbulent burning velocity, as described in detail in [48]. Here, we simply use the third method (Vflame-

Vgas) in [50] in present 1D simulation.  

When initial pressure is 3 bar in the initialization zone and propagation zone is at 1 bar, the shock 

wave can be much stronger, which makes the oscillation amplitude of flame front velocity higher, up to 

145 m/s, as shown in Fig. A5. And the increasing burning velocity is also observed in this case. 

When the initial pressure is decreased from 1 bar to 0.7 bar, the initial shock wave wakens to the 

acoustic wave in the case 3, as shown in Fig. A6. Although similarly to the flame-shock wave interaction, 

the acoustic wave moves backward and forward in the chamber and causes the flame oscillation, the 

amplitude is much lower, only 37 m/s, as shown in Fig. A7. And the burning velocity is also increasing 

with oscillation in this case.  

A5  Case 3 

In conclusion, the pressure wave moves backward and forward, which causes the oscillation of the 

flame front velocity. And the pressure waves motion results from the velocity of flow where the flame 

locates is influenced by the wave. And the stronger the wave is, the greater the amplitude of oscillation 

is. In addition, the burning velocity is increased with oscillation when the flame propagates from left to 

right. 

  



Appendix B：Comparison of experimental and theoretical values 

The initial conditions for the test are p1 (absolute pressure) =300000 Pa, T1 (temperature) =373 K, 

γ (assumed adiabatic index) =1.4. The absolute pressure after shock wave p2= 800000 Pa, which is 

shown in figure 15. Among them, the subscript 1 and 2 indicate the gas state parameters ahead of and 

after the shock wave respectively. 

According to the ideal gas state equation, 

ρ1 =
𝑝𝑝1
𝑅𝑅𝑇𝑇1

= 2.8 kg/m3 

According to Rankine-Hugoniot equation, 

𝜌𝜌1
𝜌𝜌2

=
𝛾𝛾+1
𝛾𝛾−1 𝑝𝑝2𝑝𝑝1

+1
𝛾𝛾+1
𝛾𝛾−1+

𝑝𝑝2
𝑝𝑝1

=1.96 

Thus, 

𝜌𝜌2 = 1.96𝜌𝜌1 = 5.488 kg/m3 

According to the temperature relationship, 

𝑇𝑇2
𝑇𝑇1

=
𝛾𝛾+1
𝛾𝛾−1 𝑝𝑝2𝑝𝑝1

+(𝑝𝑝2𝑝𝑝1
)2

𝛾𝛾+1
𝛾𝛾−1 𝑝𝑝2𝑝𝑝1

+1
=1.36 

Thus, 

𝑇𝑇2 = 1.36𝑇𝑇1 = 507.28 K 

𝑣𝑣𝑠𝑠 = �
𝑝𝑝2−𝑝𝑝1
𝜌𝜌2−𝜌𝜌1

∙ 𝜌𝜌2
𝜌𝜌1

=603.8 m/s 

Where 𝑣𝑣𝑠𝑠 is the calculated shock wave propagation speed. As shown in Fig. 16, the measured 

shock wave propagation speed is about 550 m/s. It shows that the calculated value is reliable. The 

temperature after shock wave is about 507.28 K. 
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Fig.1 Schematic of experiment including perforated plate 

 

 

Fig. 2 Repeatability test 
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Fig. 3 Process of flame passing through perforated plate under conditions of hole size of 3 mm, 

porosity of 12% and initial pressure of 3 bar based on experimental setup B  

 

 

Fig. 4 Flame front velocity versus distance 
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Fig.5 Sequence of photography of flame and shock wave with different hole sizes, under conditions of 

porosity of 12% and initial pressure of 2 bar based on experimental setup A 

 

 

Fig. 6 Flame front velocity with different hole sizes, under conditions of porosity of 12%, initial 

pressures of 2 bar based on experimental setup A 
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Fig. 7 Cylinder pressure with different hole sizes, under conditions of porosity of 12%, initial pressure 

of 2 bar based on experimental setup A 
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Fig. 8 Shock velocity with different hole sizes, under conditions of porosity of 12% and initial 

pressure of 2 bar based on experimental setup A 

 

 

Fig. 9 Sequence of photography of flame and shock wave at different porosities, under conditions of 

hole size of 3 mm and initial pressure of 3 bar based on experimental setup A 
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Fig. 10 Flame front position versus time at different porosities, under conditions of hole size of 3 mm, 

initial pressure of 3 bar based on experimental setup A 

 

 

Fig. 11 Flame front velocity at different porosities, under conditions of hole size of 3 mm and initial 

pressure of 3 bar based on experimental setup A 
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Fig. 12 Cylinder pressure at different porosities, under conditions of hole size of 3 mm and initial 

pressure of 3 bar based on experimental setup A 

 

 

Fig. 13 Shock velocity at different porosities, under conditions of hole size of 3 mm and initial 

pressure of 3 bar based on experimental setup A 
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Fig. 14 Sequence of photography of flame and shock wave under conditions of hole size of 2.5 

mm, porosity of 12%, and initial pressure of 3 bar based on experimental setup A 

 

 

Fig. 15 Flame front trajectory, shock wave trajectory and pressure oscillation under conditions of 

hole size of 2.5 mm, porosity of 12%, and initial pressure of 3 bar based on experimental setup A. 

Note that point A and C represent the installation position of pressure transducer; point B 

represents the end wall of the chamber; point D represents the interaction of the reflected shock 

wave. 
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Fig. 16 Flame front velocity and shock wave velocity under conditions of hole size of 2.5 mm, 

porosity of 12%, and initial pressure of 3 bar based on experimental A 

 

 

Fig.A1 The initial and boundary conditions in the case of flame-acoustic wave. 
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Fig.A2 Profiles of pressure, density and flow velocity versus time at the monitoring point in case 1 

 

 

Fig.A3 Temporal evolution of density, temperature and pressure in the case 2. Line0 to line8 is: 0--

0μs，1--8μs，2--64 μs，3--100μs，4--124μs，5-160μs，6-192μs，7-204μs，8-256μs 
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Fig.A4 Flame front velocity, flow velocity and burning velocity as a function of spatial position at 1 

bar in the initialization zone in the case 2. 

 

 

Fig. A5 Flame front velocity, flow velocity and burning velocity as a function of spatial position at 3 

bar in the initialization zone in the case 2. 
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Fig.A6 Temporal evolution of density, temperature and pressure in the case 2. Line0 to line7 is: 0--

0μs，1--25μs，2--45μs，3--80μs，4--100μs，5-130μs，6-155μs，7-185μs, repectively 

 

 

Fig. A7 Flame front velocity, flow velocity and burning velocity as a function of spatial position in the 

case 3. 
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