5 research outputs found

    Clinical outcomes of S2 Alar-Iliac screw technique in the treatment of severe spinal sagittal imbalance: a retrospective 2-year follow-up study

    Get PDF
    Background: The treatment of adult spinal deformity (ASD) remains a significant challenge, especially in elderly patients. This study aimed to evaluate the outcomes of the S2AI screw technique in the treatment of severe spinal sagittal imbalance with a minimum 2-year follow-up.Methods: From January 2015 to December 2018, 23 patients with severe degenerative thoracolumbar kyphosis who underwent placement of S2AI screws for long segment fusion were retrospectively reviewed. Patients were divided into group A (no mechanical complications, 13 cases) and group B (with mechanical complications, 10 cases) according to the occurrence of mechanical complications at the last follow-up. Radiographic parameters were compared between groups preoperatively, 1 month postoperatively and at the last follow-up. Risk factors for mechanical complications were analyzed.Results: The incidence of mechanical complications was 43.5% and the revision rate was 17.4%. At 1 month postoperatively, sagittal correction was better in group A than in group B (p<0.05). The area under the curve for predicting mechanical complications of sacral slope (SS), lumbar lordosis (LL), PI (pelvic incidence)-LL at 1 month postoperatively were 0.762 (p=0.035), 0.896 (p=0.001) and 0.754 (p=0.041) respectively and the best cut-off values were 24.1°, 32.8°and 12.0°. The sagittal correction of both groups was partially lost at the last follow-up.Conclusions: A high incidence of mechanical complications was observed in long-segment corrective surgery with the S2AI screw technique for severe spinal sagittal imbalance. Inadequate sagittal correction is a risk factor for the development of mechanical complications.

    Influence of the Arctic Oscillation on the Vertical Distribution of Wintertime Ozone in the Stratosphere and Upper Troposphere over Northern Hemisphere

    Get PDF
    The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa, 70–90°N), Arctic upper troposphere/lower stratosphere (UTLS, 150–300 hPa, 70–90°N), and mid-latitude UTLS (70–300 hPa, 30–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0–30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the mid-latitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the mid-latitude UTLS are due mainly to enhanced eddy transport from the mid-latitudes to the equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the mid-latitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by AO

    Effects of meridional sea surface temperature changes on stratospheric temperature and circulation

    Get PDF
    Using a state-of-the-art chemistry-climate model, we analyzed the atmospheric responses to increases in sea surface temperature (SST). The results showed that increases in SST and the SST meridional gradient could intensify the subtropical westerly jets and significantly weaken the northern polar vortex. In the model runs, global uniform SST increases produced a more significant impact on the southern stratosphere than the northern stratosphere, while SST gradient increases produced a more significant impact on the northern stratosphere. The asymmetric responses of the northern and southern polar stratosphere to SST meridional gradient changes were found to be mainly due to different wave properties and transmissions in the northern and southern atmosphere. Although SST increases may give rise to stronger waves, the results showed that the effect of SST increases on the vertical propagation of tropospheric waves into the stratosphere will vary with height and latitude and be sensitive to SST meridional gradient changes. Both uniform and non-uniform SST increases accelerated the large-scale Brewer-Dobson circulation (BDC), but the gradient increases of SST between 60°S and 60°N resulted in younger mean age-of-air in the stratosphere and a larger increase in tropical upwelling, with a much higher tropopause than from a global uniform 1.0 K SST increase. © 2014 Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg
    corecore