251 research outputs found

    Intra-metropolitan Office Price and Trading Volume Dynamics: Evidence from Hong Kong

    Get PDF
    Previous studies of the office market have tended to focus on either the rental market or the aggregate sales market. This paper focuses on the intra-metropolitan sales market and on office price and trading volume dynamics in Hong Kong. According to our findings, buildings trading at higher prices are not necessarily traded more often than those trading at lower prices. In addition, the price of offices in different categories does not necessarily move in tandem. The trading volumes of higher priced buildings tend to Granger cause the lower priced buildings, and this conclusion is robust to alternative classifications. The paper contrasts several existing theories. Suggestions for future research are also discussed.Commercial property; Correlation

    Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean

    Get PDF
    Table S1. Summary of small RNA annotations from NJCMS1A and NJCMS1B. Table S2. Known miRNAs identified in NJCMS1A and NJCMS1B. Table S3. Family member distribution in conserved miRNA families. Table S4. Summary of miRNA families found in NJCMS1A and NJCMS1B. Table S5. Novel miRNAs on the other arm of known pre-miRNAs. Table S6. Novel miRNAs identified in NJCMS1A and NJCMS1B. Table S7-1. High-confidence known miRNAs identified in NJCMS1A and NJCMS1B. Table S7-2. High-confidence novel miRNAs identified in NJCMS1A and NJCMS1B. Table S8-1. The up-regulated miRNAs identified in NJCMS1A and NJCMS1B. Table S8-2. The down-regulated miRNAs identified in NJCMS1A and NJCMS1B. Table S9. The targets of miRNAs identified in NJCMS1A and NJCMS1B. Table S10. Targets of novel miRNAs in NJCMS1A and NJCMS1B. Table S11. Primers used in this study. (ZIP 637 kb

    Bone-forming perivascular cells: Cellular heterogeneity and use for tissue repair

    Get PDF
    : Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering

    A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions

    Get PDF
    BackgroundQuorum sensing is bacteria’s ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens.MethodsThe literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data.ResultsFrom 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future.ConclusionThis bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions

    Cetuximab and Cisplatin Show Different Combination Effect in Nasopharyngeal Carcinoma Cells Lines via Inactivation of EGFR/AKT Signaling Pathway

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a common malignant cancer in South China. Cisplatin is a classical chemotherapeutic employed for NPC treatment. Despite the use of cisplatin-based concurrent chemoradiotherapy, distant failure still confuses clinicians and the outcome of metastatic NPC remains disappointing. Hence, a potent systemic therapy is needed for this cancer. Epidermal growth factor receptor (EGFR) represents a promising new therapeutic target in cancer. We predicted that combining the conventional cytotoxic drug cisplatin with the novel molecular-targeted agent cetuximab demonstrates a strong antitumor effect on NPC cells. In this study, we selected HNE1 and CNE2 cells, which have been proved to possess different EGFR expression levels, to validate our conjecture. The two-drug regimen showed a significant synergistic effect in HNE1 cells but an additive effect in CNE2 cells. Our results showed that cisplatin-induced apoptosis was significantly enhanced by cetuximab in the high EGFR-expressing HNE1 cells but not in CNE2 cells. Further molecular mechanism study indicated that the EGFR/AKT pathway may play an important role in cell apoptosis via the mitochondrial-mediated intrinsic pathway and lead to the different antitumor effects of this two-drug regimen between HNE1 and CNE2 cells. Thus, the regimen may be applied in personalized NPC treatments

    One-Pot Visual Detection of African Swine Fever Virus Using CRISPR-Cas12a

    Get PDF
    African swine fever virus (ASFV) is a leading cause of worldwide agricultural loss. ASFV is a highly contagious and lethal disease for both domestic and wild pigs, which has brought enormous economic losses to a number of countries. Conventional methods, such as general polymerase chain reaction and isothermal amplification, are time-consuming, instrument-dependent, and unsatisfactorily accurate. Therefore, rapid, sensitive, and field-deployable detection of ASFV is important for disease surveillance and control. Herein, we created a one-pot visual detection system for ASFV with CRISPR/Cas12a technology combined with LAMP or RPA. A mineral oil sealing strategy was adopted to mitigate sample cross-contamination between parallel vials during high-throughput testing. Furthermore, the blue fluorescence signal produced by ssDNA reporter could be observed by the naked eye without any dedicated instrument. For CRISPR-RPA system, detection could be completed within 40 min with advantageous sensitivity. While CRISPR-LAMP system could complete it within 60 min with a high sensitivity of 5.8 × 102 copies/μl. Furthermore, we verified such detection platforms display no cross-reactivity with other porcine DNA or RNA viruses. Both CRISPR-RPA and CRISPR-LAMP systems permit highly rapid, sensitive, specific, and low-cost Cas12a-mediated visual diagnostic of ASFV for point-of-care testing (POCT) applications

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Long-Term Effects of Trace NO

    No full text
    Two parallel CANON Sequencing Bach reactors were started, and 67ppm NO2 was added into Sequencing Bach Reactor 2 while nothing was added to Sequencing Bach Reactor 1. The total nitrogen removal efficiency of SBR1 was 65.5±5.0% at a removal rate of 0.198±0.023 kgN/m3/d. Meanwhile, the SBR2 with NO2 addition showed a removal efficiency of 67.5±6.2%, with a removal rate of 0.277±0.017 kgN/m3/d. The SBR2 had a higher removal efficiency and rate than the SBR1. The continuous addition of trace NO2 into the CANON Sequencing Bach Reactor allows conventional aerobic ammonia oxidation with O2 as the electron acceptor and ammonia oxidation of with NO2 as the electron acceptor to take place simultaneously, thus improving the ammonia oxidation rate and autotrophic nitrogen removal performance. China Library Classification No.: X703.1 Literature Label: A Article No.
    corecore