102 research outputs found

    Linguistic experience acquisition for novel stimuli selectively activates the neural network of the visual word form area

    Get PDF
    The human ventral visual cortex is functionally organized into different domains that sensitively respond to different categories, such as words and objects. There is heated debate over what principle constrains the locations of those domains. Taking the visual word form area (VWFA) as an example, we tested whether the word preference in this area originates from the bottom-up processes related to word shape (the shape hypothesis) or top-down connectivity of higher-order language regions (the connectivity hypothesis). We trained subjects to associate identical, meaningless, non-word-like figures with high-level features of either words or objects. We found that the word-feature learning for the figures elicited the neural activation change in the VWFA, and learning performance effectively predicted the activation strength of this area after learning. Word-learning effects were also observed in other language areas (i.e., the left posterior superior temporal gyrus, postcentral gyrus, and supplementary motor area), with increased functional connectivity between the VWFA and the language regions. In contrast, object-feature learning was not associated with obvious activation changes in the language regions. These results indicate that high-level language features of stimuli can modulate the activation of the VWFA, providing supportive evidence for the connectivity hypothesis of words processing in the ventral occipitotemporal cortex

    Coverage of harm reduction services and HIV infection: A multilevel analysis of five Chinese cities

    Get PDF
    __Background:__ Since 2003, a harm reduction program for injecting drug users has been rolled out countrywide in China. It entails services for condom promotion, a needle and syringe program (NSP), and methadone maintenance treatment (MMT). However, it remains unknown if and to what extent the coverage of these services at city level is related to a reduced risk of HIV infection among drug users. __Methods:__ We wished to quantify the extent to which city-level characteristics (such as NSP and MMT service coverage) and individual-level determinants (e.g., self-reported exposure to NSP and MMT services, knowledge, motivation, and skills) were associated with the risk of HIV infection among drug users. In 2006, we conducted an integrated serological and behavioral survey among drug users in five cities of Yunnan Province, China (N = 685), constructing a multilevel logistic regression model with drug users clustered within these cities. __Results:__ Drug users who reported having received NSP or MMT services were about 50% less likely to be infected with HIV than those who reported not having received them (OR 0.45, 95% CI, 0.26-0.83 for NSP and 0.48, 95% CI, 0.31-0.73 for MMT). Despite a between-city variation of HIV infection risk (ICC 0.24, 95% CI 0.08-0.54), none of the city-level factors could explain this difference. Individual-level determinants such as perceived risk of infection and use of condoms were not associated with HIV infection. __Conclusions:__ Although people who had used NSP or MMT services were less likely to be HIV infected, this study found no relationship between city-level coverage of HIV prevention programs and variations in HIV infection between cities. This may have been due to the low number of cities in the analysis. Future research should include the analysis of data from a larger number of cities, which are collected widely in China through integrated behavioral and serological surveys

    The effects of elevated tropospheric ozone on Carbon fixation and stable isotopic signatures of durum wheat cultivars with different biomass and yield stability

    Get PDF
    Tropospheric ozone (O3) enrichment caused by human activities can reduce important crop yields with huge economic loss and affect the global carbon cycle and climate change in the coming decades. In this study, two Italian cultivars of durum wheat (Claudio and Mongibello) were exposed to O3 (80 ppb, 5 h day−1 for 70 consecutive days), with the aim to investigate the changes in yield and biomass, ecophysiological traits, and stable carbon and nitrogen isotope values in plants, and to compare the stable isotope responses under environmental stressors. Both cultivars showed a relative O3 tolerance in terms of photosynthetic performance, but in cultivar Mongibello, O3 was detrimental to the grain yield and plant biomass. The δ13C values in the leaves of plants identified that the impact of O3 on CO2 fixation by RuBisCO was dominant. The δ15N value showed significant differences between treatments in both cultivars at seven days from the beginning of the exposure, which could be considered an early indicator of ozone pollution. Under increasingly frequent extreme climates globally, the relationships among stable isotope data, ecophysiological traits, and agronomic parameters could help breed future cultivars

    Configuration of Coupling Methanol Steam Reforming over Cu-Based Catalyst in a Synthetic Palladium Membrane for One-Step High Purity Hydrogen Production

    Get PDF
    Methanol steam reforming coupled with an efficient hydrogen purification technology to produce high purity hydrogen that feeds for hydrogen fuel cells is an attractive approach to realizing distributed power generation. However, the harmony of catalytic reforming and hydrogen separation with respect to thermodynamics is still an issue. In this work, in order to construct an integrated methanol steam reforming (MSR) reactor for high purity hydrogen production, CuCe/Al2O3 was synthesized by a hydrothermal-impregnated method and a Pd membrane supported by a porous ceramic using the electroless plating method. The results revealed that the catalytic activity and high temperature stability for methanol steam reforming were evidently improved by tuning the copper dispersion, porous structure and the crystal phase. The coupling range with palladium membrane operating temperature was widened. CuCe/Al2O3 presented an excellent stability with a better carbon deposition resistance for the long-term tests than Cu/Al2O3, which exhibited 836.68 μmol/gcat. min of H2 production with low carbon deposition (3.38 wt%) and lower CO emission (0.48 vol%). A 10 μm thick Pd membrane that was deposited on the ceramic support displayed dense and even surface morphology. The effect of palladium membrane structure on hydrogen separation was analyzed. In addition, the influence of temperature on coupling was discussed. Ultimately, high purity of H2 (99.36 vol%) was achieved at 400 °C by integrating the Pd membrane reactor with methanol steam reforming. The internal temperature distribution of the reactor and the effects of feeding conditions were also investigated. This work might offer certain reference for the development of the future distributed integrated hydrogen power generation system, especially in the application of electric vehicles and on-site electricity

    eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5

    Get PDF
    Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC) data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps) approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON) field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2  =  1.0 for CO2 flux). In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC and more generally builds the capacity to deploy complex algorithms developed by scientists in an efficient and scalable manner. In addition, modularity permits meeting project milestones while retaining extensibility with time

    Long non-coding RNA ATB promotes malignancy of esophageal squamous cell carcinoma by regulating miR-200b/Kindlin-2 axis

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related death, especially in China. In addition, the prognosis of late stage patients is extremely poor. However, the biological significance of the long non-coding RNA lnc-ATB and its potential role in ESCC remain to be documented. In this study, we investigated the role of lnc-ATB and the underlying mechanism promoting its oncogenic activity in ESCC. Expression of lnc-ATB was higher in ESCC tissues and cell lines than that in normal counterparts. Upregulated lnc-ATB served as an independent prognosis predictor of ESCC patients. Moreover, loss-of-function assays in ESCC cells showed that knockdown of lnc-ATB inhibited cell proliferation and migration both in vitroand in vivo. Mechanistic investigation indicated that lnc-ATB exerted oncogenic activities via regulating Kindlin-2, as the anti-migration role of lnc-ATB silence was attenuated by ectopic expression of Kindlin-2. Further analysis showed that lnc-ATB functions as a molecular sponge for miR-200b and Kindlin-2. Dysregulated miR-200b/Kindlin-2 signaling mediated the oncogenic activity of lnc-ATB in ESCC. Our results suggest that lnc-ATB predicts poor prognosis and may serve as a potential therapeutic target for ESCC patients

    Clinical spectrum and gene mutations in a Chinese cohort with anoctaminopathy

    Get PDF
    Recessive mutations in anoctamin-5 (ANO5) are causative for limb-girdle muscular dystrophy (LGMD) 2L and non-dysferlin Miyoshi-like distal myopathy (MMD3). ANDS mutations are highly prevalent in European countries; however it is not common in patients of Asian origin, and there is no data regarding the Chinese population. We retrospectively reviewed the clinical manifestations and gene mutations of Chinese patients with anoctaminopathy. A total of five ANDS mutations including four novel mutations and one reported mutation were found in four patients from three families. No hotspot mutation was found. Three patients presented with presymptomatic hyperCKemia and one patient had limb muscle weakness. Muscle imaging of lower limbs showed preferential adductor magnus and medial gastrocnemius involvement. No hotspot mutation has been identified in Chinese patients to date. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes

    Get PDF
    Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals. Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease

    NEON’s eddy-covariance: interoperable flux data products, software and services for you, now

    Get PDF
    Networks of eddy-covariance (EC) towers such as AmeriFlux, ICOS and NEON are vital for providing the necessary distributed observations to address interactions at the soil-vegetation-atmosphere interface. NEON, close to full operation with 47 tower sites, will represent the largest single-provider EC network globally. Its standardized observation and data processing suite is designed specifically for inter-site comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, NEON coordinates EC with rich contextual observations such as airborne remote sensing and in-situ sampling bouts. In January 2018 NEON enters its operational phase, and EC data products, software and services become fully available to the science community at large. These resources strive to incorporate lessons-learned through collaborations with AmeriFlux, ICOS, LTER and others, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities. Here, we present an overview of the ongoing product release, alongside efforts to integrate and collaborate with existing infrastructures, networks and communities. Near-real-time heat, water and carbon cycle observations in “basic” and “expanded”, self-describing HDF5 formats become accessible from the NEON Data Portal, including an Application Program Interface. Subsequently, they are ingested into the AmeriFlux processing pipeline, together with inclusion in FLUXNET globally harmonized data releases. Software for reproducible, extensible and portable data analysis and science operations management also becomes available. This includes the eddy4R family of R-packages underlying the data product generation, together with the ability to directly participate in open development via GitHub version control and DockerHub image hosting. In addition, templates for science operations management include a web-based field maintenance application and a graphical user interface to simplify problem tracking and resolution along the entire data chain. We hope that this presentation can initiate further collaboration and synergies in challenge areas, and would appreciate input and discussion on continued development. Plain Language Summary For a sustained period of time the eddy-covariance and boundary layer communities have invested technical and scientific expertise into the construction of the National Ecological Observatory Network (NEON). In January 2018 NEON enters its operational phase, and the time has come for our communities to reap the first fruits of their efforts! This presentation intends to create awareness of the resources that become available to our communities: interoperable flux data products, software and assignable asset services. We focus on how these resources will permit to elucidate interactions at the soil-vegetation-atmosphere interface for decades to come: continuous eddy-covariance observations of the surface-atmosphere exchange are tightly coordinated with rich contextual data such as airborne remote sensing and in-situ sampling bouts. In this way new investigative dimensions are provided to capture land-atmosphere feedbacks across multiple spatial and temporal scales

    Stevioside Prevents Wear Particle-Induced Osteolysis by Inhibiting Osteoclastogenesis and Inflammatory Response via the Suppression of TAK1 Activation

    Get PDF
    Aseptic loosening and periprosthetic osteolysis are the leading causes of total joint arthroplasty failure, which occurs as a result of chronic inflammatory response and enhanced osteoclast activity. Here we showed that stevioside, a natural compound isolated from Stevia rebaudiana, exhibited preventative effects on titanium particle-induced osteolysis in a mouse calvarial model. Further histological assessment and real-time PCR analysis indicated that stevioside prevented titanium particle-induced osteolysis by inhibiting osteoclast formation and inflammatory cytokine expression in vivo. In vitro, we found that stevioside could suppress RANKL-induced osteoclastogenesis and titanium particle-induced inflammatory response in a dose-dependent manner. Mechanistically, stevioside achieved these effects by disrupting the phosphorylation of TAK1 and subsequent activation of NF-κB/MAPKs signaling pathways. Collectively, our data suggest that stevioside effectively suppresses osteoclastogenesis and inflammatory response both in vitro and in vivo, and it might be a potential therapy for particle-induced osteolysis and other osteolytic diseases
    corecore