66 research outputs found

    of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Get PDF
    Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I) oxide at about 250 ∘ C and finish at about 400 ∘ C. The phase transformation proceeds with a homogeneous nucleation

    Potential Assessment and Economic Analysis of Concentrated Solar Power against Solar Photovoltaic Technology

    Get PDF
    Competition between concentrated solar power and solar photovoltaic has been the subject of frequent debate in recent years based on their cost of fabrication, efficiency, storage, levelized cost of energy, reliability, and complexity of respective technologies. Taking Pakistan as a testbed, a study was conducted to determine which technology is economical in a particular location and climate. The study assesses the meteorological, orographic, and spatial factors that impact the performance and cost of both renewable energy systems. A SWOT analysis, followed by technoeconomic analyses, was conducted to determine suitable sites for setting up solar power plants in Pakistan. A detailed assessment of siting factors for solar power plants was conducted to shortlist the most suitable sites. Based on the results, economic analysis was performed to install 100 MW photovoltaic and parabolic trough power plants at selected locations. The levelized cost of energy for the 100 MW parabolic trough is 10.8 cents/kWh and 12 cents/kWh in best-case scenarios, i.e., for locations of Toba and Quetta, respectively, whereas the LCOEs of 100 MW photovoltaic systems stand comparatively low at 7.36 cents/kWh, 7.21 cents/kWh, 7.01 cents/kWh, 6.82 cents/kWh, 6.02 cents/kWh, and 5.95 cents/kWh in Multan, Bahawalpur, Rahim Yar Khan, Hyderabad, Quetta, and Toba, respectively. The results favor choosing solar PV plants over solar CSP plants in terms of finances in the selected regions. The findings will assist financiers and policymakers in creating better policies in terms of long-term goals.publishedVersio

    Computationally efficient 3D analytical magnet loss prediction in surface mounted permanent magnet machines

    Get PDF
    This study proposes a computationally efficient analytical method, for accurate prediction of three-dimensional (3D) eddy current loss in the rotor magnets of surface mounted permanent magnet (SPM) machines considering slotting effect. Subdomain model incorporating stator tooth tips is employed to generate the information on radial and tangential time-derivatives of 2D magnetic field (eddy current sources) within the magnet. The distribution of the eddy current sources in 3D is established for the magnets by applying the eddy current boundary conditions and the Coulomb gauge imposed on the current vector potential. The 3D eddy current distributions in magnets are derived analytically by employing the method of variable separation and the total eddy current loss in the magnets are subsequently established. The method is validated by 3D time-stepped finite element analysis for 18-slot, 8-pole and 12-slot, 8-pole permanent magnet machines. The eddy current loss variations in the rotor magnets with axial and circumferential number of segmentations are studied. The reduction of magnet eddy current loss is investigated with respect to harmonic wavelength of the source components to suggest a suitable segmentation for the rotor magnets in SPM machines

    Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells

    Get PDF
    In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Get PDF
    Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss

    Study on lapping performance of agglomerated diamond abrasive

    No full text
    A new lapping process is proposed for high efficiency and low surface roughness lapping of hard-brittle materials such as sapphire, which sinters single crystal diamond abrasive (average grain size 3 μm) with vitrified bond into agglomerated abrasives (average grain size 30 μm). The lapping performance of agglomerate abrasives was studied through machining sapphire substrate with comparison to those using 3 μm or 30 μm single crystal diamond abrasive. The results show that the agglomerated has higher material removal rate (MRR), which is 1.127 μm/min after 15 min machining under the same conditions. It is also found that the agglomerated abrasive performs stable during the machining, the MRR of which is 0.483 μm/min after 120 min lapping, decreasing 57.14% from that after 15 min lapping, while the MRR of 3 μm single crystal diamond decreases for 78.02%. The roughness of surfaces lapped by agglomerated abrasive or 3 μm single crystal diamond is similar, which is Ra 9.45 nm or Ra 8.75 nm, respectively. Both are far lower than the Ra 246 nm of 30 μm single crystal diamond abrasive. The mechanism that agglomerated abrasive can achieve low lapping surface roughness and high MRR can be summarized as follows: it has the characteristics of multiple cutting edges which effectively improve the contacts between abrasive and sapphire surface and enhance the MRR; at the same time, it has the ability of self-sharpening, which ensures that the blunt abrasive falls off during the lapping and that new abrasives are put into process, thus ensuring the stability of the process

    Shear behavior of short studs in steel-thin ultrahigh-performance concrete composite structures

    No full text
    Steel-concrete composite structures gradually tend to be thinner and lighter in modern bridge engineering. Ultrahigh-performance concrete (UHPC) as an innovative solution has been used to upgrade the behavior of composite structures and accelerate construction, and short stud connectors are the key elements to guarantee the effective connection of steel and concrete components. This study conducted push-out test to explore the failure modes and load-slip relationships of short studs in steel-thin UHPC composite structures (STUCs). The experimental findings revealed that the fracture of the stud shank and local concrete crushing dominated the failure modes of all specimens. Increasing stud diameter could enhance shear strength, while arranging short studs densely and decreasing stud height could result in the reduction of shear capacity of a single stud. The experiment data were employed for the construction and verification of the finite element models. The impact of several parameters on the shear strength was investigated via the validated numerical models. The shear strength increased approximately linearly with stud diameter for short studs in thin UHPC layers, but the cover thickness and UHPC strength had a slight impact. The shear capacity of short studs couldn't be negatively impacted by reducing the aspect ratio to 3.16. In addition, the ultimate shear capacity significantly decreased due to the grouped stud effect for grouped short studs when the spacing between the studs was less than 70 mm. The shear capacity was conservatively predicted by these specifications for short studs in thin UHPC layer, according to the comparison of the simulated data with the existing construction specifications. Finally, a new equation considering multiple parameters was proposed and validated by the test data, which could precisely predict the shear strength of short studs in STUCs
    corecore