42 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Exploring the actual implementation of e-wallet application in Malaysia

    Get PDF
    E-wallet, also referred to as digital wallet, is a software application designed to replace physical wallets, with the primary purpose of facilitating online transactions when users wish to make virtual payments. Nowadays, E-wallets are not limited to mobile applications, but they have also been extended to wearable devices, such as smartwatches, enabling users to make payments via their watches. This research study focuses on three main E-wallet service providers in Malaysia, namely TouchNGo E-wallet, Boost, and Grab pay, as they are the top three E-wallets in the country. The aim of this paper is to explore the real-world implementation of E-wallets among mobile phone users in Malaysia, employing the Technology Adoption Model as the theoretical framework. Six independent variables were identified to study the implementation of E-wallets, and a total of 500 respondents shared their opinions on retaining the usage of E-wallet in Malaysia. The data collected were analysed using SPSS for Pearson Correlation Analysis and Multiple Linear Regression. Out of the six variables, five independent variables were accepted, and one independent variable was rejected due to the greater significant level. The highest correlation coefficient falls under Business Resources with 0.704. The study delves into the implications and constraints, providing insights for the future advancement of E-wallets within the Malaysian context.

    Amelioration of non-alcoholic fatty liver disease by targeting adhesion G protein-coupled receptor F1 (Adgrf1)

    No full text
    Background: Recent research has shown that the adhesion G protein-coupled receptor F1 (Adgrf1; also known as GPR110; PGR19; KPG_012; hGPCR36) is an oncogene. The evidence is mainly based on high expression of Adgrf1 in numerous cancer types, and knockdown Adgrf1 can reduce the cell migration, invasion, and proliferation. Adgrf1 is, however, mostly expressed in the liver of healthy individuals. The function of Adgrf1 in liver has not been revealed. Interestingly, expression level of hepatic Adgrf1 is dramatically decreased in obese subjects. Here, the research examined whether Adgrf1 has a role in liver metabolism. Methods: We used recombinant adeno-associated virus-mediated gene delivery system, and antisense oligonucleotide was used to manipulate the hepatic Adgrf1 expression level in diet-induced obese mice to investigate the role of Adgrf1 in hepatic steatosis. The clinical relevance was examined using transcriptome profiling and archived biopsy specimens of liver tissues from non-alcoholic fatty liver disease (NAFLD) patients with different degree of fatty liver. Results: The expression of Adgrf1 in the liver was directly correlated to fat content in the livers of both obese mice and NAFLD patients. Stearoyl-coA desaturase 1 (Scd1), a crucial enzyme in hepatic de novo lipogenesis, was identified as a downstream target of Adgrf1 by RNA-sequencing analysis. Treatment with the liver-specific Scd1 inhibitor MK8245 and specific shRNAs against Scd1 in primary hepatocytes improved the hepatic steatosis of Adgrf1-overexpressing mice and lipid profile of hepatocytes, respectively. Conclusions: These results indicate Adgrf1 regulates hepatic lipid metabolism through controlling the expression of Scd1. Downregulation of Adgrf1 expression can potentially serve as a protective mechanism to stop the overaccumulation of fat in the liver in obese subjects. Overall, the above findings not only reveal a new mechanism regulating the progression of NAFLD, but also proposed a novel therapeutic approach to combat NAFLD by targeting Adgrf1. Funding: This work was supported by the National Natural Science Foundation of China (81870586), Area of Excellence (AoE/M-707/18), and General Research Fund (15101520) to CMW, and the National Natural Science Foundation of China (82270941, 81974117) to SJ

    Effect of prior antiplatelet therapy on major adverse cardiac events in patients diagnosed with infective endocarditis: Population-based retrospective cohort study

    No full text
    Background: Infective endocarditis (IE) occurs with an incidence of about 3–10 per 100,000 person-years globally. Those with infective endocarditis complicated embolic events have worse outcomes. However, whether antiplatelet therapy could prevent the development of ischemic stroke and myocardial infarction remained unknown. Materials and Methods: We conducted a retrospective cohort study using Taiwan National Health Insurance Research Database to access the effect of prior antiplatelet therapy on major adverse cardiac events in patients diagnosed with infective endocarditis. Results: The clinical characteristics and the risk of subsequent major adverse cardiac events in 901 patients with infective endocarditis with prior antiplatelet therapy and a matched cohort without antiplatelet therapy were retrospectively analyzed. The majority (63%) of the patients with prior antiplatelet therapy were male and 568 (57.7%) had a high (≥3) Charlson Cormorbidity Index score. There was no significant difference in the risk of myocardial infarction, ischemic stroke, and major bleeding between the two groups. The tests of interaction showed the risk of myocardial infarction was contingent on heart failure. Conclusions: Prior antiplatelet therapy did not prevent the cerebral and myocardial infarction in those with infective endocarditis. Neither did them increase the risk of major bleeding in patients with infective endocarditis

    GRIN1 Regulates μ-Opioid Receptor Activities by Tethering the Receptor and G Protein in the Lipid Raft*

    No full text
    The lipid raft location of μ-opioid receptor (MOR) determines the receptor activities. However, the manner in which MOR is anchored within the lipid rafts is undetermined. Using the targeted proteomic approach and mass spectrometry analyses, we have identified GRIN1 (G protein-regulated inducer of neurite outgrowth 1) can tether MOR with the G protein α-subunit and subsequently regulate the receptor distribution within the lipid rafts. Glutathione S-transferase fusion pulldown and receptor mutational analyses indicate that GRIN1-MOR interaction involves a receptor sequence 267GSKEK271 within the MOR third intracellular loop that is not involved in Gα interaction. The GRIN1 domains involved in MOR interaction are also distinct from those involved in Gα interaction. Pertussis toxin pretreatment reduced the amount of GRIN1 co-immunoprecipitated with MOR but not the amount with Gα. Furthermore, overexpression of GRIN1 significantly enhanced the amount of MOR in lipid raft and the receptor signaling magnitude as measured by Src kinase activation. Such increase in MOR signaling was demonstrated further by determining the GRIN1-dependent pertussis toxin-sensitive neurite outgrowth. In contrast to minimal neurite outgrowth induced by etorphine in control neuroblastoma N2A cells, overexpression of GRIN1 resulted in the increase in etorphine- and non-morphine-induced neurite outgrowth in these cells. Knocking down endogenous GRIN1 by small interfering RNA attenuated the agonist-induced neurite outgrowth. Disrupting lipid raft by methyl-β-cyclodextrin also blocked neurite outgrowth. Hence, by tethering Gα with MOR, GRIN1 stabilizes the receptor within the lipid rafts and potentiates the receptor signaling in the neurite outgrowth processes
    corecore