958 research outputs found

    Gene regulatory network inference by point-based Gaussian approximation filters incorporating the prior information

    Get PDF
    Examinar a ampliação do uso de TICs por organizações sociais e governamentais na gestão da cidade é o objetivo do presente estudo. Nossa intenção é entender de que forma as tecnologias da informação e comunicação podem ser uma via alternativa que redefine as relações entre Estado e sociedade, substituindo políticas urbanas tradicionais por formas colaborativas de interação dos atores sociais. Entre os resultados alcançados pela pesquisa, é possível destacar a elaboração de uma metodologia capaz de mapear os princípios de organização, articulação, conexão e interação que constituem a existência de redes tecnossociais. A aplicação da metodologia nas cidades do Rio de Janeiro e de São Paulo demonstrou indicadores, gráficos e práticas políticas. A análise desses dados revela como as redes se constituem por uma arquitetura móvel, fluída, flexível, organizadas em torno de políticas comuns de ação e formadas por uma identidade coletiva que aproxima os atores das redes tecnossociais. Os princípios que mediam esta coesão são de compartilhamento, confiança e solidariedade, que redefinem as formas da organização do poder em direção a alternativas de organização política e desenvolvimento social

    V-Star: Learning Visibly Pushdown Grammars from Program Inputs

    Full text link
    Accurate description of program inputs remains a critical challenge in the field of programming languages. Active learning, as a well-established field, achieves exact learning for regular languages. We offer an innovative grammar inference tool, V-Star, based on the active learning of visibly pushdown automata. V-Star deduces nesting structures of program input languages from sample inputs, employing a novel inference mechanism based on nested patterns. This mechanism identifies token boundaries and converts languages such as XML documents into VPLs. We then adapted Angluin's L-Star, an exact learning algorithm, for VPA learning, which improves the precision of our tool. Our evaluation demonstrates that V-Star effectively and efficiently learns a variety of practical grammars, including S-Expressions, JSON, and XML, and outperforms other state-of-the-art tools.Comment: PLDI '2

    Continuous R-valuations

    Full text link
    We introduce continuous RR-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags RR. Like the valuation monad V\mathbf{V} introduced by Jones and Plotkin, we show that the construction of continuous RR-valuations extends to a strong monad VR\mathbf{V}^R on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. Th\'eron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad VmR\mathbf{V}^R_m out of it, whose elements we call minimal RR-valuations. We also show that continuous RR-valuations have close connections to measures when RR is taken to be IR+\mathbf{I}\mathbb{R}^\star_+, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded τ\tau-smooth measure μ\mu (defined on the Borel σ\sigma-algebra), canonically determines a continuous IR+\mathbf{I}\mathbb{R}^\star_+-valuation; and (2) such a continuous IR+\mathbf{I}\mathbb{R}^\star_+-valuation is the most precise (in a certain sense) continuous IR+\mathbf{I}\mathbb{R}^\star_+-valuation that approximates μ\mu, when the support of μ\mu is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous IR+\mathbf{I}\mathbb{R}^\star_+-valuation. Additionally, we show that the latter is minimal

    A cone-theoretic barycenter existence theorem

    Full text link
    We show that every continuous valuation on a locally convex, locally convex-compact, sober topological cone C\mathfrak{C} has a barycenter. This barycenter is unique, and the barycenter map β\beta is continuous, hence is the structure map of a Vw\mathbf V_{\mathrm w}-algebra, i.e., an Eilenberg-Moore algebra of the extended valuation monad on the category of T0T_0 topological spaces; it is, in fact, the unique Vw\mathbf V_{\mathrm w}-algebra that induces the cone structure on C\mathfrak{C}
    corecore