15 research outputs found

    Effect of biodegradable poly-3-hydroxybutyrate amendment on the soil biochemical properties and fertility under varying sand loads

    Get PDF
    Background: Poly-3-hydroxybutyrate (P3HB) is a bacterial intracellular carbon and energy storage polymer, used as a thermoplastic polyester in a wide array of industrial and agricultural applications. However, how the soil microbiome and fertility are altered by exogenously applied P3HB has been relatively unexplored. This study aimed to assess the effects of P3HB addition to nutrient restricted soil: its biological properties and lettuce (Lactuca sativa L. var. capitata L.) biomass production. The experiment was designed to evaluate impacts of spatial arrangement of the relatively organic-rich (soil organic matter, P3HB particles) versus poor fractions of the matrix with confounding factors such as variable microbial biomass, inherent nutrient/energy status, different water relations (due to variable hydrophysical properties of soil augmented by sand at different ratios). Results: The results revealed that P3HB in soils induced inconsistent to contradictory changes in the microbial abundance as well as in most enzymatic activities. The differences were conditioned by the sand content both under P3HB presence or absence. On the other hand, dehydrogenase, urease activities, basal and substrate-induced soil respirations were mostly enhanced by P3HB addition, directly with increasing sand content (several respiration types). Nevertheless, P3HB significantly inhibited lettuce biomass production. Conclusions: P3HB introduction to soil boosts the microbial activity owing to the preferential utilization of P3HB as C source, which depletes soil N and strongly inhibits the plant growth. Enhanced microbial activity in P3HB-amended soils with high sand content (60-80%) suggested that in nutrient-impoverished soil P3HB can temporarily replace SOM as a C source for microbial communities due to the shift of their structure to preferentially P3HB-degrading microbiome

    Food and agricultural wastesderived biochars in combination with mineral fertilizer as sustainable soil amendments to enhance soil microbiological activity, nutrient cycling and crop production

    Get PDF
    The ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited. Therefore, in the present study the effects of agricultural (AB) and food waste derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth and soil health indicators were compared in a pot experiment. In particular, the impacts of applied amendments on soil microbiological health indicators those related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as well as different substrate induced respirations along with crop’s agronomic performance were explored. The results showed that compared to the control, the amendment with AB combined with MF enhanced the crop growth as revealed by higher above and below ground biomass accumulation. Moreover, both the biochars (FWB and AB) modified soil chemical properties (pH and electric conductivity) in the presence or absence of MF as compared to control. However, with the sole application of MF was most influential strategy to improve soil basal and arginin-induced respiration as well as most of the soil extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted in enhanced urease activity. This suggested the role of MF and FWB in nutrient cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is recommended as an efficient and climate smart package for sustainable soil management and crop production

    Stability evaluation of n-alkyl hyaluronic acid derivates by DSC and TG measurement

    No full text
    Termické a termooxidační chování sodné soli kyseliny hyaluronové a jejich n-hexyl, n-tetradecyl a n-hexadecyl derivátů o stejném stupni substituce bylo studováno metodami DSC a DTG. Zjistila se snížená termická stabilita těchto derivátů oproti nesubstituovyným vzorkům, stejně jako nižší hodnoty termodynamicko-kinetických parametrů degradačních procesů.The thermal and thermooxidative behavior of sodium salt of hyaluronic acid (HA) and its n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl ether derivatives having an equal degree of substitution have been studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). Derivatives were prepared by a substitution of H atom at the OH bound to the sixth C of N-acetyl-D-glucosamin of HA unit by n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl chains. Both thermal and thermooxidative degradation of HA and derivatives resulted in multistep process. The main interest of this work was focused on processes occurring in the course of the first decomposition step. Experimental DSC data showed lower stability of derivatives and, remarkably lower heat evolution in comparison with original HA. On the other hand, TG measurement recorded lower mass loss for derivates which indicated appearance of new types of crosslinking reactions. Oxidative stability was evaluated by means of DSC that provided the induction period and the protection factor determination. Derivates showed remarkably lower stability in comparison with original HAcomparing each other, the highest oxidation stability showed n-decyl and n-tetradecyl derivates

    A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis

    Get PDF
    Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products

    Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor

    No full text
    The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability

    Cattle Manure Fermented with Biochar and Humic Substances Improve the Crop Biomass, Microbiological Properties and Nutrient Status of Soil

    Get PDF
    Co-composting of raw manure with other organic sources has recently gained the attention of the scientific community. In the present study, raw manure and manures enriched with humic substances (Humac) or biochar were co-composted to improve their physico-chemical properties. We conducted an experiment including variants consisting of soil amended with manure (M), manure + Humac (M + H), manure + biochar (M + B), and unamended (control). Soil physico-chemical, biological, and plant properties were assessed altogether. All matured manures differed from each other physico-chemically (nutrient content) and in microbial composition, and hence their effects on the observed parameters. Compared to control, the soil respiration and enzyme activities related to N and P mineralization were enhanced due to the amendment of either manure or enriched manures. The M + H treatment resulted in higher pH of the manures as compared to other treatments, whereas the M + B and M treatments revealed the highest C-org contents of the final product, which was negatively correlated with HA:FA. In the same manner, M + H and M + B were the most prominent treatments, causing higher variations in basal soil respiration. The same treatments resulted in the highest percent increase values of soil enzymes related to C, N, and P, which further show the potential of manure modification as a viable option to boost soil fertility and health

    Manure Maturation with Biochar: Effects on Plant Biomass, Manure Quality and Soil Microbiological Characteristics

    Get PDF
    Application of biochar and composts prepared from organic wastes as soil amendments has been recognized as a beneficial strategy to enhance soil fertility and crop production. However, the modification of manures with applied organic amendments such as biochar has not been well explained. Therefore, the preliminary study was designed to evaluate the impact of two doses of biochar (low 0.4 kg + 10 kg of manure and high 4 kg + 10 kg of manure) on the modification of resulting co-composted manure properties, and subsequently to evaluate the effect of matured manure amendment on the soil chemical and biological properties and plant yield in the pot experiment with barley (Hordeum vulgare L.). The following variants were tested: control, manure (M), manure + low biochar dose (M + LB), manure + high biochar dose (M + HB). Results revealed that, the M + HB significantly improved the co-composted manure properties as compared to control and M + LB, respectively. The most pronounced effects of M + HB treatment were observed on pH, NH4-N and humic acid to fulvic acid ratio (used as an index for manure maturity) relative to other treatments. Similarly, significant variations were observed between AOB (ammonium oxidizing bacteria) and nirs genes under M + HB which lowered the AOB and increased the nirs abundance as compared to other treatments. Moreover, when applied to soil, M + HB increased the observed soil chemical parameters with the exception of TN contents as compared to M and M + LB treatments. Similarly, plant biomass was significantly enhanced under the applied M + HB treatment. However, statistically insignificant differences were observed regarding soil enzyme activities and soil respiration values under the applied amendments. Thus, it was concluded that the co-composted manure with high biochar dose can have the potential to enhance the manure properties, soil fertilization value and plant biomass. However, its effects on soil microbiological and enzyme activities were intended be explored under long-term field experiments

    Self-organization of crystallites in gel phases

    No full text
    Byla srudována samoorganizace tuhých anorganických částic halogenidu stříbra, připravených srážením v gelové fázi vodorozpustných derivátů celulozy.Self-organization of solid mineral particles of silver halides prepared by prcipitaiton in a gel-like phase of water soluble cellulose derivative has been studied
    corecore