212 research outputs found

    Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm and the Network Simplex Algorithm

    Get PDF
    The minimum-cost flow (MCF) problem is a fundamental optimization problem with many applications and seems to be well understood. Over the last half century many algorithms have been developed to solve the MCF problem and these algorithms have varying worst-case bounds on their running time. However, these worst-case bounds are not always a good indication of the algorithms' performance in practice. The Network Simplex (NS) algorithm needs an exponential number of iterations for some instances, but it is considered the best algorithm in practice and performs best in experimental studies. On the other hand, the Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly polynomial, but performs badly in experimental studies. To explain these differences in performance in practice we apply the framework of smoothed analysis. We show an upper bound of O(mn2log(n)log(ϕ))O(mn^2\log(n)\log(\phi)) for the number of iterations of the MMCC algorithm. Here nn is the number of nodes, mm is the number of edges, and ϕ\phi is a parameter limiting the degree to which the edge costs are perturbed. We also show a lower bound of Ω(mlog(ϕ))\Omega(m\log(\phi)) for the number of iterations of the MMCC algorithm, which can be strengthened to Ω(mn)\Omega(mn) when ϕ=Θ(n2)\phi=\Theta(n^2). For the number of iterations of the NS algorithm we show a smoothed lower bound of Ω(mmin{n,ϕ}ϕ)\Omega(m \cdot \min \{ n, \phi \} \cdot \phi).Comment: Extended abstract to appear in the proceedings of COCOON 201

    Compassion as a practical and evolved ethic for conservation

    Get PDF
    © The Author(s) 2015. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. The ethical position underpinning decisionmaking is an important concern for conservation biologists when setting priorities for interventions. The recent debate on how best to protect nature has centered on contrasting intrinsic and aesthetic values against utilitarian and economic values, driven by an inevitable global rise in conservation conflicts. These discussions have primarily been targeted at species and ecosystems for success, without explicitly expressing concern for the intrinsic value and welfare of individual animals. In part, this is because animal welfare has historically been thought of as an impediment to conservation. However, practical implementations of conservation that provide good welfare outcomes for individuals are no longer conceptually challenging; they have become reality. This reality, included under the auspices of "compassionate conservation," reflects an evolved ethic for sharing space with nature and is a major step forward for conservation

    A Novel Role for the Centrosomal Protein, Pericentrin, in Regulation of Insulin Secretory Vesicle Docking in Mouse Pancreatic β-cells

    Get PDF
    The centrosome is important for microtubule organization and cell cycle progression in animal cells. Recently, mutations in the centrosomal protein, pericentrin, have been linked to human microcephalic osteodysplastic primordial dwarfism (MOPD II), a rare genetic disease characterized by severe growth retardation and early onset of type 2 diabetes among other clinical manifestations. While the link between centrosomal and cell cycle defects may account for growth deficiencies, the mechanism linking pericentrin mutations with dysregulated glucose homeostasis and pre-pubertal onset of diabetes is unknown. In this report we observed abundant expression of pericentrin in quiescent pancreatic β-cells of normal animals which led us to hypothesize that pericentrin may have a critical function in β-cells distinct from its known role in regulating cell cycle progression. In addition to the typical centrosome localization, pericentrin was also enriched with secretory vesicles in the cytoplasm. Pericentrin overexpression in β-cells resulted in aggregation of insulin-containing secretory vesicles with cytoplasmic, but not centrosomal, pericentriolar material and an increase in total levels of intracellular insulin. RNAi- mediated silencing of pericentrin in secretory β-cells caused dysregulated secretory vesicle hypersecretion of insulin into the media. Together, these data suggest that pericentrin may regulate the intracellular distribution and secretion of insulin. Mice transplanted with pericentrin-depleted islets exhibited abnormal fasting hypoglycemia and inability to regulate blood glucose normally during a glucose challenge, which is consistent with our in vitro data. This previously unrecognized function for a centrosomal protein to mediate vesicle docking in secretory endocrine cells emphasizes the adaptability of these scaffolding proteins to regulate diverse cellular processes and identifies a novel target for modulating regulated protein secretion in disorders such as diabetes

    The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

    Get PDF
    We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, d13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to d13C of SOM. Based on additional d13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems

    The Gracilis Myocutaneous Free Flap: A Quantitative Analysis of the Fasciocutaneous Blood Supply and Implications for Autologous Breast Reconstruction

    Get PDF
    BACKGROUND: Mastectomies are one of the most common surgical procedures in women of the developed world. The gracilis myocutaneous flap is favoured by many reconstructive surgeons due to the donor site profile and speed of dissection. The distal component of the longitudinal skin paddle of the gracilis myocutaneous flap is unreliable. This study quantifies the fasciocutaneous vascular territories of the gracilis flap and offers the potential to reconstruct breasts of all sizes. METHODS: Twenty-seven human cadaver dissections were performed and injected using lead oxide into the gracilis vascular pedicles, followed by radiographic studies to identify the muscular and fasciocutaneous perforator patterns. The vascular territories and choke zones were characterized quantitatively using the 'Lymphatic Vessel Analysis Protocol' (LVAP) plug-in for Image J® software. RESULTS: We found a step-wise decrease in the average vessel density from the upper to middle and lower thirds of both the gracilis muscle and the overlying skin paddle with a significantly higher average vessel density in the skin compared to the muscle. The average vessel width was greater in the muscle. Distal to the main pedicle, there were either one (7/27 cases), two (14/27 cases) or three (6/27 cases) minor pedicles. The gracilis angiosome was T-shaped and the maximum cutaneous vascular territory for the main and first minor pedicle was 35 × 19 cm and 34 × 10 cm, respectively. CONCLUSION: Our findings support the concept that small volume breast reconstructions can be performed on suitable patients, based on septocutaneous perforators from the minor pedicle without the need to harvest any muscle, further reducing donor site morbidity. For large reconstructions, if a 'T' or tri-lobed flap with an extended vertical component is needed, it is important to establish if three territories are present. Flap reliability and size may be optimized following computed tomographic angiography and surgical delay

    Methods to study microbial adhesion on abiotic surfaces

    Get PDF
    Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.This work was financially supported by: Project UID/EQU/00511/2013-LEPABE, by the FCT/MEC with national funds and co-funded by FEDER in the scope of the P2020 Partnership Agreement; Project NORTE-07-0124-FEDER-000025 - RL2_Environment&Health, by FEDER funds through Programa Operacional Factores de Competitividade-COMPETE, by the Programa Operacional do Norte (ON2) program and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia; European Research Project SusClean (Contract number FP7-KBBE-2011-5, project number: 287514), Scholarships SFRH/BD/52624/2014, SFRH/BD/88799/2012 and SFRH/BD/103810/2014
    corecore