28 research outputs found

    Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo

    Get PDF
    Every cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate. Laser ablations of actomyosin networks reveal that constricting cells have higher cortical tension, generate tension anisotropies and morphological changes in adjacent regions of neighboring cells, and require their neighbors to coordinate their own changes in shape. Thus, tensile forces determine the first spatial segregation of cells during mammalian development. We propose that, unlike more cohesive tissues, the early embryo dissipates tensile forces required by constricting cells via their neighbors, thereby allowing confined cell repositioning without jeopardizing global architecture.Fil: Samarage, Chaminda R.. Monash University; AustraliaFil: White, Melanie D.. Monash University; AustraliaFil: Alvarez, Yanina Daniela. Monash University; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fierro González, Juan Carlos. Monash University; AustraliaFil: Henon, Yann. Monash University; AustraliaFil: Jesudason, Edwin C.. National Health Service Scotland; Reino UnidoFil: Bissiere, Stephanie. Monash University; Australia. Institute of Molecular and Cell Biology; SingapurFil: Fouras, Andreas. Monash University; AustraliaFil: Plachta, Nicolas. Monash University; Australia. Institute of Molecular and Cell Biology; Singapu

    SERCA directs cell migration and branching across species and germ layers

    Get PDF
    Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo

    Get PDF
    Every cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate. Laser ablations of actomyosin networks reveal that constricting cells have higher cortical tension, generate tension anisotropies and morphological changes in adjacent regions of neighboring cells, and require their neighbors to coordinate their own changes in shape. Thus, tensile forces determine the first spatial segregation of cells during mammalian development. We propose that, unlike more cohesive tissues, the early embryo dissipates tensile forces required by constricting cells via their neighbors, thereby allowing confined cell repositioning without jeopardizing global architecture.Fil: Samarage, Chaminda R.. Monash University; AustraliaFil: White, Melanie D.. Monash University; AustraliaFil: Alvarez, Yanina Daniela. Monash University; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fierro González, Juan Carlos. Monash University; AustraliaFil: Henon, Yann. Monash University; AustraliaFil: Jesudason, Edwin C.. National Health Service Scotland; Reino UnidoFil: Bissiere, Stephanie. Monash University; Australia. Institute of Molecular and Cell Biology; SingapurFil: Fouras, Andreas. Monash University; AustraliaFil: Plachta, Nicolas. Monash University; Australia. Institute of Molecular and Cell Biology; Singapu

    Parameters and variables used in estimates and computational model.

    No full text
    <p><sup>1</sup> No studies report stiffness of embryonic lung tissue. Range is an estimate. Lower bound: 20 Pa for amphibian embryos; upper bound 400 Pa for ASM cells in vitro.</p><p><sup>2</sup> We assume that the viscosity of airway lumen fluid in the embryo is lower than that of neonatal airway mucus but higher than that of blood.</p><p><sup>3</sup> Fetal pig airway SM 1–20 kPa, highest in trachea, lowest in bronchioles. We assume this as an upper bound, and that embryonic SM will likely be weaker by 1–2 orders of magnitude. We assume a SM thickness of 15 microns.</p><p><sup>4</sup> Fetal pig, pseudoglandular stage</p><p><sup>5</sup> Fetal mouse (lowest value).</p><p><sup>6</sup> Rabbit fetus, static pressure.</p><p><sup>7</sup> Fetal sheep, static pressure.</p><p>Parameters and variables used in estimates and computational model.</p
    corecore