7,672 research outputs found
Youth Program Adult Leader\u27s Directive Assistance and Autonomy Support and Development of Adolescentsâ Agency Capacity
Developing a capacity for exercising agency is an important developmental task of adolescence. Many organized youth programs provide adolescents opportunities to build their capacity to exercise agency. The researchers tested hypotheses that adult youth program leader\u27s directive assistance and autonomy support would promote adolescentsâ capacity for agency. They surveyed 441 high school adolescents and 11 adult advisors from 10 Future Farmers of America chapters twice over 2 years. Adolescents selfâreported on their capacity for agency and advisors reported on each adolescent\u27s capacity. Directive assistance and autonomy support correlated with the capacity for agency within both time points. Only autonomy support predicted adolescentsâ capacity for agency over time. Implications of leader\u27s support for adolescentsâ capacity for exercising agency are discussed
Mining chemical information from Open patents
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Linked Open Data presents an opportunity to vastly improve the quality of science in all fields by increasing the availability and usability of the data upon which it is based. In the chemical field, there is a huge amount of information available in the published literature, the vast majority of which is not available in machine-understandable formats. PatentEye, a prototype system for the extraction and semantification of chemical reactions from the patent literature has been implemented and is discussed. A total of 4444 reactions were extracted from 667 patent documents that comprised 10 weeks' worth of publications from the European Patent Office (EPO), with a precision of 78% and recall of 64% with regards to determining the identity and amount of reactants employed and an accuracy of 92% with regards to product identification. NMR spectra reported as product characterisation data are additionally captured.Peer Reviewe
On the Motion of Fluidized Granular Currents: Motion Along Horizontal Surfaces
The motion of fuidised granular currents over horizontal surfaces is investigated experi- mentally and by mathematical modelling of solid and fluid phases. Analytical solutions for the bulk motion were tested by experiments involving material being introduced at a constant volume flux, and a reasonable agreement found between theoretical predictions and laboratory measurements
OSCAR4: a flexible architecture for chemical text-mining
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.Peer Reviewe
Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy.
We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapour deposited graphene films on sapphire, silicon dioxide/silicon and germanium. We validate the technique against measurements performed with previously established conventional transmission based THz-TDS and are able to resolve conductivity changes in response to induced back-gate voltages. Compared to the transmission geometry, measurement in reflection mode requires careful alignment and complex analysis, but circumvents the need of a terahertz transparent substrate, potentially enabling fast, contactless, in-line characterisation of graphene films on non-insulating substrates such as germanium.H.L. and J.A.Z. acknowledge financial support from the EPSRC (Grant No. EP/L019922/1). P.B.W. acknowledges EPSRC Cambridge NanoDTC EP/G037221/1. R.D., H.E.B. and D. R. acknowledge financial support from the EPSRC (Grant No. EP/J017671/1, Coherent Terahertz Systems). S.H. acknowledges funding from the EPSRC (Grant No. EP/K016636/1, GRAPHTED)
The influence of temperature (up to 120 °C) on the thermal conductivity of variably porous andesite
The thermal conductivity of volcanic rock is an essential input parameter in a wide range of models designed to better understand volcanic and geothermal processes. However, although volcanoes and geothermal reservoirs are often characterised by temperatures above ambient, laboratory thermal conductivity measurements are often performed at ambient temperature. In addition, there are currently few data on the temperature dependence of thermal conductivity for andesite, a common volcanic rock. Here, we provide elevated-temperature (up to 120 °C) laboratory measurements of thermal conductivity for variably porous (âŒ0.05 to âŒ0.6) and variably glassy andesites from Mt. Ruapheu (New Zealand) using the transient hot-strip method. Our data show that (1) the thermal conductivity of these andesites has little to no temperature dependence and, therefore, (2) there is also no influence of porosity on the temperature dependence of thermal conductivity. We compare our new data with compiled published data to show that the thermal conductivity of volcanic rocks may decrease, remain constant, or increase as a function of temperature. We show that the thermal conductivity of amorphous glass and crystalline material increase and decrease, respectively, as temperature increases. We therefore interpret the temperature dependence of the thermal conductivity of volcanic rock to be dependent on glass content. The thermal conductivity of the studied andesites, the microstructure of which can be characterised by phenocrysts within a variably glassy groundmass, has little to no temperature dependence because the decrease in the thermal conductivity of the crystalline materials, due to decreases in lattice thermal conductivity, is offset by the increase in the thermal conductivity of the amorphous glass. A simple modelling approach, using the temperature dependence of the thermal conductivity of glass and crystalline material, provides a crystal content of 0.26 for a thermal conductivity independent of temperature, a common crystal content for andesite dome rock. Our findings imply that calculations of heat transfer through partially glassy volcanic rocks need not consider a temperature-dependent thermal conductivity, but that decreases and increases in thermal conductivity with temperature should be expected for fully crystallised or devitrified volcanic rocks and completely glassy volcanic rocks, respectively. We highlight that more experimental studies are now required to assess the evolution of thermal conductivity as a function of temperature in a wide range of volcanic rocks with different crystallinities
Re-stating the post-political: depoliticization, social inequalities, and city-region growth
This paper argues that city-region building debates and relatedly âpost-politicalâ literatures are missing critical perspectives on the state, particularly the stateâs continued existence as a social relation and an arena for politics, its role in the regulation of uneven development and the conflicts and struggles that arise from this. The paper brings the state centrally into âpost-politicalâ debates via a critical analysis of the interrelationships between depoliticization and neoliberalism. Focusing on Sheffield (South Yorkshire, England) in the context of devolution and deal-making public policy, the paper explores the seemingly consensual visionmaking dynamics of this city region and dissects the tensions around economic governance, welfare austerity and social inequalities to get a handle on the âpostpoliticalâ depoliticized state in, and of, contemporary capitalism
Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites
Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations
CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin
Human skin harbors two major T cell compartments of equal size that are distinguished by expression of the chemokine receptor CCR8. In vitro studies have demonstrated that CCR8 expression is regulated by TCR engagement and the skin tissue microenvironment. To extend these observations, we examined the relationship between CCR8+ and CCR8â skin T cells in vivo. Phenotypic, functional, and transcriptomic analyses revealed that CCR8+ skin T cells bear all the hallmarks of resident memory T cells, including homeostatic proliferation in response to IL-7 and IL-15, surface expression of tissue localization (CD103) and retention (CD69) markers, low levels of inhibitory receptors (programmed cell death protein 1, Tim-3, LAG-3), and a lack of senescence markers (CD57, killer cell lectin-like receptor subfamily G member 1). In contrast, CCR8â skin T cells are heterogeneous and comprise variable numbers of exhausted (programmed cell death protein 1+), senescent (CD57+, killer cell lectin-like receptor subfamily G member 1+), and effector (T-bethi, Eomeshi) T cells. Importantly, conventional and high-throughput sequencing of expressed TCR ÎČ-chain (TRB) gene rearrangements showed that these CCR8-defined populations are clonotypically distinct, suggesting unique ontogenies in response to separate antigenic challenges and/or stimulatory conditions. Moreover, CCR8+ and CCR8â skin T cells were phenotypically stable in vitro and displayed similar levels of telomere erosion, further supporting the likelihood of a nonlinear differentiation pathway. On the basis of these results, we propose that long-lived memory T cells in human skin can be defined by the expression of CCR8
- âŠ