10 research outputs found

    Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose

    Get PDF
    Objective: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. Methods: Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. Results: Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. Conclusion: The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle

    Heat-Inactivated Akkermansia muciniphila Improves Gut Permeability but Does Not Prevent Development of Non-Alcoholic Steatohepatitis in Diet-Induced Obese Ldlr−/−.Leiden Mice

    No full text
    The development of non-alcoholic steatohepatitis (NASH) has been associated with alterations in gut microbiota composition and reduced gut barrier function. Akkermansia muciniphila is a gut microbe that is thought to have health-promoting properties, including the ability to improve gut barrier function and host metabolism, both when administered live and after heat-inactivation. We questioned whether heat-inactivated A. muciniphila may reduce NASH development. Ldlr−/−.Leiden mice, a translational, diet-induced model for NASH, were fed a NASH-inducing high-fat diet (HFD) supplemented with heat-inactivated A. muciniphila. After 28 weeks, effects of the treatment on obesity and associated metabolic dysfunction in the gut (microbiota composition and permeability), adipose tissue, and liver were studied relative to an untreated HFD control. Treatment with heat-inactivated A. muciniphila did not affect body weight or adiposity and had no effect on plasma lipids, blood glucose, or plasma insulin. Heat-inactivated A. muciniphila had some minor effects on mucosal microbiota composition in ileum and colon and improved gut barrier function, as assessed by an in vivo functional gut permeability test. Epidydimal white adipose tissue (WAT) hypertrophy and inflammation were not affected, but heat-inactivated A. muciniphila did reduce hypertrophy in the mesenteric WAT which is in close proximity to the intestine. Heat-inactivated A. muciniphila did not affect the development of NASH or associated fibrosis in the liver and did not affect circulating bile acids or markers of liver fibrosis, but did reduce PRO-C4, a type IV collagen synthesis marker, which may be associated with gut integrity. In conclusion, despite beneficial effects in the gut and mesenteric adipose tissue, heat-inactivated A. muciniphila did not affect the development of NASH and fibrosis in a chronic disease setting that mimics clinically relevant disease stages

    Non-enzymatic cross-linking of collagen type II fibrils is tuned via osmolality switch

    No full text
    An important aspect in cartilage ageing is accumulation of advanced glycation end products (AGEs) after exposure to sugars. Advanced glycation results in crosslinks formation between the collagen fibrils in articular cartilage, hampering their flexibility and making cartilage more brittle. In the current study, we investigate whether collagen crosslinking after exposure to sugars depends on the stretching condition of the collagen fibrils. Healthy equine cartilage specimens were exposed to L-threose sugar and placed in hypo-, iso- or hyper-osmolal conditions that expanded or shrank the tissue and changed the 3D conformation of collagen fibrils. We applied micro-indentation tests, contrast enhanced micro-computed tomography, biochemical measurement of pentosidine cross-links, and cartilage surface color analysis to assess the effects of advanced glycation cross-linking under these different conditions. Swelling of extracellular matrix due to hypo-osmolality made cartilage less susceptible to advanced glycation, namely, the increase in effective Young's modulus was approximately 80% lower in hypo-osmolality compared to hyper-osmolality and pentosidine content per collagen was 47% lower. These results indicate that healthy levels of glycosaminoglycans not only keep cartilage stiffness at appropriate levels by swelling and pre-stressed collagen fibrils, but also protect collagen fibrils from adverse effects of advanced glycation. These findings highlight the fact that collagen fibrils and therefore cartilage can be protected from further advanced glycation ('ageing') by maintaining the joint environment at sufficiently low osmolality. Understanding of mechanochemistry of collagen fibrils provided here might evoke potential ageing prohibiting strategies against cartilage deterioration. This article is protected by copyright. All rights reserved

    The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis

    No full text
    Background Cardiovascular risk is increased in transgender persons using gender-affirming hormone therapy. To gain insight into the mechanism by which sex hormones affect cardiovascular risk in transgender persons, we investigated the effect of hormone therapy on markers of inflammation and hemostasis. Methods In this exploratory study, 48 trans women using estradiol patches plus cyproterone acetate (CPA) and 47 trans men using testosterone gel were included. They were between 18 and 50 years old and did not have a history of cardiovascular events. Measurements were performed before and after 3 and 12 months of hormone therapy. Results After 12 months, in trans women, systemic and endothelial inflammatory markers decreased (hs-CRP -66%, (95% CI -76; -53), VCAM-1-12%, (95% CI -16; -8)), while platelet activation markers increased (PF-4 +17%, (95% CI 4; 32), β-thromboglobulin +13%, (95% CI 2; 24)). The coagulation marker fibrinogen increased transiently, after 3 months (+15%, (95% CI 1; 32)). In trans men, hs-CRP increased (+71%, (95% CI 19; 145)); platelet activation and coagulation markers were not altered. In both trans women and trans men, leptin and adiponectin changed towards reference values of the experienced gender. Conclusions Platelet activation and coagulation marker concentrations increased in trans women using transdermal estradiol plus CPA, but not in trans men using testosterone. Also, concentrations of inflammatory markers decreased in trans women, while hs-CRP increased in trans men. Our results indicate that hormone therapy may affect hemostasis in transgender persons, which could be an underlying mechanism explaining the increased cardiovascular risk in this population

    Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr−/−.Leiden mice with manifest obesity-associated NASH

    No full text
    Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr−/−.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (−61% by valine and −71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins

    Additive effects of depression and obesity on neural correlates of inhibitory control

    No full text
    Scripts and materials accompanying "Additive effects of depression and obesity on neural correlates of inhibitory control

    Non-enzymatic cross-linking of collagen type II fibrils is tuned via osmolality switch

    No full text
    An important aspect in cartilage ageing is accumulation of advanced glycation end products (AGEs) after exposure to sugars. Advanced glycation results in cross-links formation between the collagen fibrils in articular cartilage, hampering their flexibility and making cartilage more brittle. In the current study, we investigate whether collagen cross-linking after exposure to sugars depends on the stretching condition of the collagen fibrils. Healthy equine cartilage specimens were exposed to l-threose sugar and placed in hypo-, iso-, or hyper-osmolal conditions that expanded or shrank the tissue and changed the 3D conformation of collagen fibrils. We applied micro-indentation tests, contrast enhanced micro-computed tomography, biochemical measurement of pentosidine cross-links, and cartilage surface color analysis to assess the effects of advanced glycation cross-linking under these different conditions. Swelling of extracellular matrix due to hypo-osmolality made cartilage less susceptible to advanced glycation, namely, the increase in effective Young's modulus was approximately 80% lower in hypo-osmolality compared to hyper-osmolality and pentosidine content per collagen was 47% lower. These results indicate that healthy levels of glycosaminoglycans not only keep cartilage stiffness at appropriate levels by swelling and pre-stressed collagen fibrils, but also protect collagen fibrils from adverse effects of advanced glycation. These findings highlight the fact that collagen fibrils and therefore cartilage can be protected from further advanced glycation ("ageing") by maintaining the joint environment at sufficiently low osmolality. Understanding of mechanochemistry of collagen fibrils provided here might evoke potential ageing prohibiting strategies against cartilage deterioration.Biomaterials & Tissue Biomechanic

    Translational characterization of the temporal dynamics of metabolic dysfunctions in liver, adipose tissue and the gut during diet-induced NASH development in Ldlr−/−.Leiden mice

    No full text
    NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods: High-fat-diet (HFD)-fed Ldlr−/−.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results: HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28–38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion: HFD-fed Ldlr−/−.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD
    corecore