13 research outputs found

    A 4-week, lifestyle-integrated, home-based exercise training programme elicits improvements in physical function and lean mass in older men and women: a pilot study

    Get PDF
    Background: Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Methods: Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/mÂČ) carried out the 4-week “lifestyle-integrated” HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D3-Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness. Results: Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm2), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D3-Creatine. Conclusions: This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of “lifestyle-integrated” HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults

    Internal comparison between deuterium oxide (D2O) and L-[ring-13C6] phenylalanine for acute measurement of muscle protein synthesis in humans

    Get PDF
    Stable isotope tracer methodologies are becoming increasingly widespread in metabolic research; yet a number of factors restrict their implementation, such as, i.v infusions, multiple cannulae, tissue samples, and significant cost. We recently validated the sensitivity of the orally administered stable isotope tracer deuterium oxide (D2O) for quantifying day‐to‐day changes in muscle protein synthesis (MPS). This method is less invasive, restrictive, and more cost‐effective than traditional amino acid (AA) tracer techniques. In the present study, we hypothesized the sensitivity of our analytical techniques (GC‐Pyrolysis‐IRMS) would permit D2O‐derived measurements of MPS over much shorter periods (i.e., hours) usually only possible using AA‐tracer techniques. We recruited nine males (24 ± 3 year, BMI: 25 ± 3 kg·m−ÂČ) into an internally controlled comparison of D2O versus 13C AA‐tracers. The day before the acute study subjects consumed 400 mL D2O, and on the study day, received a primed (0.3 mg·kg−1) continuous (0.6 mg·kg·h−1) i.v infusion of L‐[ring‐13C6]‐phenylalanine to quantify MPS under both: (1) basal [postabsorptive] and; (2) stimulated [postprandial] that is, consumption of 20 g EAA, conditions. Measures of MPS yielded indistinguishable technique differences with respect to EAA, 13C: 0.065 ± 0.004 to 0.089 ± 0.006%·h−1 (P < 0.05) and D2O: 0.050 ± 0.007 to 0.088 ± 0.008%·h−1 (P < 0.05) with qualitatively similar increases. Our findings reveal that acute measurement of MPS, usually only possible using AA‐tracers, are feasible over shorter periods with orally administered D2O when used in tandem with GC‐Pyrolysis‐IRMS. We conclude that this D2O approach provides a less invasive, cost‐effective, and flexible means by which to quantify MPS acutely over several hours

    Combined in vivo muscle mass, muscle protein synthesis and muscle protein breakdown measurement: a ‘Combined Oral Stable Isotope Assessment of Muscle (COSIAM)’ approach

    Get PDF
    Optimising approaches for measuring skeletal muscle mass and turnover that are widely applicable, minimally invasive and cost effective is crucial in furthering research into sarcopenia and cachexia. Traditional approaches for measurement of muscle protein turnover require infusion of expensive, sterile, isotopically labelled tracers which limits the applicability of these approaches in certain populations (e.g. clinical, frail elderly). To concurrently quantify skeletal muscle mass and muscle protein turnover i.e. muscle protein synthesis (MPS) and muscle protein breakdown (MPB), in elderly human volunteers using stable-isotope labelled tracers i.e. Methyl-[D(3)]-creatine (D(3)-Cr), deuterium oxide (D(2)O), and Methyl-[D(3)]-3-methylhistidine (D(3)-3MH), to measure muscle mass, MPS and MPB, respectively. We recruited 10 older males (71 ± 4 y, BMI: 25 ± 4 kg(.)m(2), mean ± SD) into a 4-day study, with DXA and consumption of D(2)O and D(3)-Cr tracers on day 1. D(3)-3MH was consumed on day 3, 24 h prior to returning to the lab. From urine, saliva and blood samples, and a single muscle biopsy (vastus lateralis), we determined muscle mass, MPS and MPB. D(3)-Cr derived muscle mass was positively correlated to appendicular fat-free mass (AFFM) estimated by DXA (r = 0.69, P = 0.027). Rates of cumulative myofibrillar MPS over 3 days were 0.072%/h (95% CI, 0.064 to 0.081%/h). Whole-body MPB over 6 h was 0.052 (95% CI, 0.038 to 0.067). These rates were similar to previous literature. We demonstrate the potential for D(3)-Cr to be used alongside D(2)O and D(3)-3MH for concurrent measurement of muscle mass, MPS, and MPB using a minimally invasive design, applicable for clinical and frail populations

    Declines in muscle protein synthesis account for short-term muscle disuse atrophy in humans in the absence of increased muscle protein breakdown

    Get PDF
    Background: We determined the short-term (i.e. 4days) impacts of disuse atrophy in relation to muscle protein turnover [acute fasted-fed muscle protein synthesis (MPS)/muscle protein breakdown (MPB) and integrated MPS/estimated MPB]. Methods: Healthy men (N=9, 22±2years, body mass index 24±3kgm−2) underwent 4day unilateral leg immobilization. Vastus lateralis (VL) muscle thickness (MT) and extensor strength and thigh lean mass (TLM) were measured. Bilateral VL muscle biopsies were collected on Day 4 at t=−120, 0, 90, and 180min to determine integrated MPS, estimated MPB, acute fasted-fed MPS (l-[ring-13C6]-phe), and acute fasted tracer decay rate representative of MPB (l-[15N]-phe and l-[2H8]-phe). Protein turnover cell signalling was measured by immunoblotting. Results: Immobilization decreased TLM [pre: 7477±1196g, post: 7352±1209g (P0.05). Conclusions: Human skeletal muscle disuse atrophy is driven by declines in MPS, not increases in MPB. Pro-anabolic therapies to mitigate disuse atrophy would likely be more effective than therapies aimed at attenuating protein degradation

    Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle

    Get PDF
    We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO2: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletalmuscle.Wefoundthat:1)hypoxiablunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1alpha pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term

    Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men

    Get PDF
    Background: The andropause is associated with declines in serum testosterone (T), loss of muscle mass (sarcopenia) and frailty. Two major interventions purported to offset sarcopenia are anabolic steroid therapies and resistance exercise training (RET). Nonetheless, the efficacy, and physiological and molecular impacts of T therapy adjuvant to short-term RET remain poorly defined.Methods: Eighteen non-hypogonadal healthy older men, 65-75 y, were assigned in a random double-blinded fashion to receive, bi-weekly, either placebo (P, saline, n=9) or T (Sustanon 250 mg, n=9) injections over 6-weeks whole-body RET (3-sets of 8-10 reps at 80% 1-RM). Subjects underwent dual-energy x-ray absorptiometry, ultrasound of vastus lateralis (VL) muscle architecture, and knee-extensor isometric muscle force tests; VL muscle biopsies were taken to quantify myogenic/anabolic gene expression, anabolic signalling, muscle protein synthesis (D2O) and breakdown (extrapolated).Results: T adjuvant to RET, augmented total fat free mass (FFM) (P=0.007), legs fat free mass (P=0.02), and appendicular FFM (P=0.001) gains, while decreasing total fat mass (P=0.02). Augmentations in VL muscle thickness, fascicle length, and quadriceps cross-section area with RET occured to a greater extent in T (P less than 0.05).Total strength (P=0.0009) and maximal voluntary contract (e.g. knee extension at 70°) (P=0.002) increased significantly more in the T group. Mechanistically, both muscle protein synthesis rates (T: 2.13±0.21%·day−1 vs. P: 1.34±0.13%·day−1, P=0.0009) and absolute breakdown rates (T: 140.2±15.8 vs. P: 90.2±11.7g·day-1, P=0.02) were elevated with T therapy, which led to higher net turnover and protein accretion in the T group (T: 8.3±1.4g·day-1 vs. P: 1.9±1.2 g·day-1, P=0.004). Increases in ribosomal biogenesis (RNA:DNA ratio); mRNA expression relating to T metabolism (Androgen Receptor: 1.4-fold; Srd5a1: 1.6-fold; AKR1C3: 2.1-fold; HSD17ÎČ3: 2-fold); IGF-1-signalling (IGF-1Ea (3.5-fold), IGF-1Ec (3-fold) and myogenic regulatory factors (MRF); as well the activity of anabolic signalling (e.g. mTOR, AKT, RPS6; P less than 0.05) were all upregulated with T therapy. Only T up-regulated mitochondrial citrate synthase activity (P=0.03) and transcription factor A (Tfam) (1.41±0.2-fold, P=0.0002), in addition to PGC1-α mRNA (1.19±0.21-fold, P=0.037).Conclusions: Administration of T adjuvant to RET enhanced skeletal muscle mass and performance, while upregulating myogenic gene programming, myocellular translational efficiency and capacity - collectively resulting in higher protein turnover, and net protein accretion. T coupled with RET is an effective short-term intervention to improve muscle mass/ function in older non-hypogonadal men

    Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women

    Get PDF
    Background & aims: Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented group of older women, to leucine-enriched essential amino acids (EAA) in comparison to a large bolus of whey protein (WP). Methods: Twenty-four older women (65 ± 1 y) received (N Œ 8/group) 1.5 g leucine-enriched EAA supplements (LEAA_1.5), 6 g LEAA (LEAA_6) in comparison to 40 g WP. A primed constant I.V infusion of 13C6-phenylalanine was used to determine MPS at baseline and in response to feeding (FED) and feeding-plus-exercise (FED-EX; 6 x 8 unilateral leg extensions; 75%1-RM). We quantified plasma insulin/AA concentrations, leg femoral blood flow (LBF)/muscle microvascular blood flow (MBF), and anabolic signalling via immunoblotting. Results: Plasma insulineamia and EAAemia were greater and more prolonged with WP than LEAA, although LEAA_6 peaked at similar levels to WP. Neither LEAA or WP modified LBF or MBF. FED increased MPS similarly in the LEAA_1.5, LEAA_6 and WP (P < 0.05) groups over 0e2 h, with MPS significantly higher than basal in the LEAA_6 and WP groups only over 0e4 h. However, FED-EX increased MPS similarly across all the groups from 0 to 4 h (P < 0.05). Only p-p70S6K1 increased with WP at 2 h in FED (P < 0.05), and at 2/4 h in FED-EX (P < 0.05). Conclusions: In conclusion, LEAA_1.5, despite only providing 0.6 g of leucine, robustly (perhaps maximally) stimulated MPS, with negligible trophic advantage of greater doses of LEAA or even to 40 g WP. Highlighting that composition of EAA, in particular the presence of leucine rather than amount is most crucial for anabolism

    Effects of sprint interval training on ectopic lipids and tissue-specific insulin sensitivity in men with non-alcoholic fatty liver disease

    Get PDF
    Purpose: This study examined the feasibility of sprint interval exercise training (SIT) for men with non-alcoholic fatty liver disease (NAFLD) and its effects on intrahepatic triglyceride (IHTG), insulin sensitivity (hepatic and peripheral), visceral (VAT) and subcutaneous adipose tissue (ScAT). Methods: Nine men with NAFLD (age 41 ± 8 years; BMI 31.7 ± 3.1 kg m−2; IHTG 15.6 ± 8.3%) were assessed at: (1) baseline (2) after a control phase of no intervention (pre-training) and (3) after 6 weeks of SIT (4–6 maximal 30 s cycling intervals, three times per week). IHTG, VAT and ScAT were measured using magnetic resonance spectroscopy or imaging and insulin sensitivity was assessed via dual-step hyperinsulinaemic-euglycaemic clamp with [6,6-D2] glucose tracer. Results: Participants adhered to SIT, completing ≄ 96.7% of prescribed intervals. SIT increased peak oxygen uptake [ V O2peak: + 13.6% (95% CI 8.8–18.2%)] and elicited a relative reduction in IHTG [− 12.4% (− 31.6 to 6.7%)] and VAT [− 16.9% (− 24.4 to − 9.4%); n = 8], with no change in body weight or ScAT. Peripheral insulin sensitivity increased throughout the study (n = 8; significant main effect of phase) but changes from pre- to post-training were highly variable (range − 18.5 to + 58.7%) and not significant (P = 0.09), despite a moderate effect size (g* = 0.63). Hepatic insulin sensitivity was not influenced by SIT. Conclusions: SIT is feasible for men with NAFLD in a controlled laboratory setting and is able to reduce IHTG and VAT in the absence of weight loss
    corecore