2,464 research outputs found
Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo
Formation of the nuclear envelope (NE) around segregated chromosomes occurs by the reshaping of the endoplasmic reticulum (ER), a reservoir for disassembled nuclear membrane components during mitosis. In this study, we show that inner nuclear membrane proteins such as lamin B receptor (LBR), MAN1, Lap2ÎČ, and the trans-membrane nucleoporins Ndc1 and POM121 drive the spreading of ER membranes into the emerging NE via their capacity to bind chromatin in a collaborative manner. Despite their redundant functions, decreasing the levels of any of these trans-membrane proteins by RNAi-mediated knockdown delayed NE formation, whereas increasing the levels of any of them had the opposite effect. Furthermore, acceleration of NE formation interferes with chromosome separation during mitosis, indicating that the time frame over which chromatin becomes membrane enclosed is physiologically relevant and regulated. These data suggest that functionally distinct classes of chromatin-interacting membrane proteins, which are present at nonsaturating levels, collaborate to rapidly reestablish the nuclear compartment at the end of mitosis
Recommended from our members
Wavelet Decomposition of Forced Turbulence: Applicability of the Iterative Donoho-Johnstone Threshold
We examine the decomposition of forced Taylor-Green and Arnâold-Beltrami- Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresh- olding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows
Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign
Volatile organic compound (VOC) measurements were made during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) at Thompson Farm (TF), a continental site 25 km from the New Hampshire coast, and Appledore Island (AI), a marine site 10 km off the Maine coast. The 24 h mean total hydroxyl radical (OH) reactivity (±1Ï) for the suite of VOCs was 4.15 (±2.64) sâ1 at TF and 2.57 (±1.10) sâ1 at AI. The larger range of reactivity at TF was dominated by isoprene and the monoterpenes (mean combined reactivity = 2.01 (±2.57) sâ1). The impact of local anthropogenic hydrocarbon sources such as liquefied petroleum gas (LPG) leakage and fossil fuel evaporation was evident at both sites. During the campaign, a propane flux of 9 (±2) Ă 109 molecules cmâ2 sâ1 was calculated from the linear regression of the mean 0100â0400 local time mixing ratios at TF. This is consistent with fluxes observed in 2003 at sites spread throughout the coastal area of New Hampshire indicating that LPG tank leakage is a major hydrocarbon source throughout the region. Net monoterpene fluxes during ICARTT at TF were 6 (±2), 1.8 (±0.4), 1.2 (±0.6), and 0.4 (±0.5) Ă 109 molecules cmâ2 sâ1 for αâpinene, ÎČâpinene, camphene, and limonene, respectively. Comparison to estimated NO3 and O3 loss rates indicate that gross monoterpene emission rates were approximately double the observed net fluxes at TF and comparable to current monoterpene nighttime emission inventory estimates for the northeast
Recommended from our members
Dynamic Parameters of Balance Which Correlate to Elderly Persons with a History of Falls
Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7Ă greater in fallers than young adults; p<0.05), while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects' COP measures from the young adult cohort were weighted to establish a balance score (âB-scoreâ) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly ânon-fallersâ had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001). A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention
Estimating the Spatial Extent of Bottom-Water Hypoxia and Habitat Degradation in a Shallow Estuary
Bottom-water hypoxia (†2 mg 1-1 dissolved oxygen [DO]) greatly modifies the benthic habitat of estuaries, depending upon spatial extent, duration, and frequency. Bottom-water hypoxia often develops under conditions of density stratification, which inhibits vertical mixing, and warm temperatures, which enhance biological oxygen demand. Long-term, mid-channel data from the Neuse River Estuary in North Carolina permitted evaluation of how stratification and temperature combined to affect DO concentrations at the bottom. Salinity stratification (DS) and water temperature (T) explained respectively 30 and 23% of the variance in bottom-water DO concentrations. The amount of salinity stratification required to induce bottom-water hypoxia declined with increasing water temperature. About 80% of observed hydrographic profiles exhibited bottom hypoxia when DS exceeded 5 psu and T exceeded 20°C. Using cross-channel hydrographic surveys as verification, we derived a general set of methods to estimate the lateral extent of low-DO bottom water from midchannel hydrographic profiles. The method involves cross-estuary and along-estuary extrapolation based on assumption of a flat oxycline. Occasional violation of this assumption resulted in modest overestimation in cross-channel extent of low DO. Application of this method produced estimates ranging from 0 to 116 km2 of bottom area (0 to 42% of the estuarine study area) exposed to hypoxia over all sample dates in summer 1997. The maximal bottom area exposed to hypoxia corresponded closely with an independent estimate of the area (100 km2) that experienced almost complete mortality of Macoma spp. clams, the key benthic resource for demersal fishes and crabs. Consequently, mid-channel hydrographic profiles taken along the mid-channel of the estuary can be employed to assess the spatial scale of bottom habitat degradation due to hypoxia
Recommended from our members
State and trait characteristics of anterior insula time-varying functional connectivity.
The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS contributes to cognitive processes through frontal and parietal connections. Open questions remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS subregions. We studied three independent large samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that displayed both "state" and "trait" characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions were stable over time and related to empathy measures
Particle-in-cell Simulations of Ion Dynamics in a Pinched-beam Diode
article-in-cell simulations of a 1.6âMV, 800âkA, and 50âns pinched-beam diode have been completed with emphasis placed on the quality of the ion beams produced. Simulations show the formation of multiple regions in the electron beam flow characterized by locally high charge and current density (âhot spotsâ). As ions flow through the electron-space-charge cloud, these hot spots electrostatically attract ions to produce a non-uniform ion current distribution. The length of the cavity extending beyond the anode-to-cathode gap (i.e., behind the cathode tip) influences both the number and amplitude of hot spots. A longer cavity length increases the number of hot spots yet significantly reduces the amplitude producing a smoother, more uniform ion beam than for shorter cavities. The net current and the ion bending angles are also significantly smaller with long cavities
Combining Citizen Science and Genomics to Investigate Tick, Pathogen, and Commensal Microbiome at Single-Tick Resolution
The prevalence of tickborne diseases worldwide is increasing virtually unchecked due to the lack of effective control strategies. The transmission dynamics of tickborne pathogens are influenced by the tick microbiome, tick co-infection with other pathogens, and environmental features. Understanding this complex system could lead to new strategies for pathogen control, but will require large-scale, high-resolution data. Here, we introduce Project Acari, a citizen science-based project to assay, at single-tick resolution, species, pathogen infection status, microbiome profile, and environmental conditions of tens of thousands of ticks collected from numerous sites across the United States. In the first phase of the project, we collected more than 2,400 ticks wild-caught by citizen scientists and developed high-throughput methods to process and sequence them individually. Applying these methods to 192 Ixodes scapularis ticks collected in a region with a high incidence of Lyme disease, we found that 62% were colonized by Borrelia burgdorferi, the Lyme disease pathogen. In contrast to previous reports, we did not find an association between the microbiome diversity of a tick and its probability of carrying B. burgdorferi. However, we did find undescribed associations between B. burgdorferi carriage and the presence of specific microbial taxa within individual ticks. Our findings underscore the power of coupling citizen science with high-throughput processing to reveal pathogen dynamics. Our approach can be extended for massively parallel screening of individual ticks, offering a powerful tool to elucidate the ecology of tickborne disease and to guide pathogen-control initiatives
- âŠ