7 research outputs found

    A Statistical Study of the Solar Wind Turbulence at Ion Kinetic Scales Using the k-filtering Technique and Cluster Data

    Get PDF
    Plasma turbulence at ion kinetic scales in the solar wind is investigated using the multi-point magnetometer data from the Cluster spacecraft. By applying the k-filtering method, we are able to estimate the full three-dimensional power spectral density P (ωsc, k) at a certain spacecraft frequency ωsc in wavevector (k) space. By using the wavevector at the maximum power in P (ωsc, k) at each sampling frequency ωsc and the Doppler shifted frequency ωpla in the solar wind frame, the dispersion plot ωpla = ωpla(k) is found. Previous studies have been limited to very few intervals and have been hampered by large errors, which motivates a statistical study of 52 intervals of solar wind. We find that the turbulence is predominantly highly oblique to the magnetic field k ⊄ k‖, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency ωpla < Ωp. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfvén waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations are of similar nature in both the fast and slow solar wind at ion kinetic scales. The fast wind has significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced. Key words: solar wind – turbulence – waves 1

    A Solar Tornado Observed by AIA/SDO: Rotational Flow and Evolution of Magnetic Helicity in a Prominence and Cavity

    Get PDF
    During 2011/09/24, as observed by the Atmospheric Imaging Assembly (AIA) instrument of the Solar Dynamic Observatory (SDO) and ground-based \Ha\ telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011/09/25 8:00UT material flows upwards from the prominence core along a narrow loop-like structure, accompanied by a rise (≄\geq50,000km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot (∌\sim1MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggest that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.Comment: 4 pages, 5 figures, accepted by ApJ Letter

    Fast Track Algorithm: How To Differentiate A “Scleroderma Pattern” From A “Non-Scleroderma Pattern”

    Get PDF
    Objectives: This study was designed to propose a simple “Fast Track algorithm” for capillaroscopists of any level of experience to differentiate “scleroderma patterns” from “non-scleroderma patterns” on capillaroscopy and to assess its inter-rater reliability. Methods: Based on existing definitions to categorise capillaroscopic images as “scleroderma patterns” and taking into account the real life variability of capillaroscopic images described standardly according to the European League Against Rheumatism (EULAR) Study Group on Microcirculation in Rheumatic Diseases, a fast track decision tree, the “Fast Track algorithm” was created by the principal expert (VS) to facilitate swift categorisation of an image as “non-scleroderma pattern (category 1)” or “scleroderma pattern (category 2)”. Mean inter-rater reliability between all raters (experts/attendees) of the 8th EULAR course on capillaroscopy in Rheumatic Diseases (Genoa, 2018) and, as external validation, of the 8th European Scleroderma Trials and Research group (EUSTAR) course on systemic sclerosis (SSc) (Nijmegen, 2019) versus the principal expert, as well as reliability between the rater pairs themselves was assessed by mean Cohen's and Light's kappa coefficients. Results: Mean Cohen's kappa was 1/0.96 (95% CI 0.95-0.98) for the 6 experts/135 attendees of the 8th EULAR capillaroscopy course and 1/0.94 (95% CI 0.92-0.96) for the 3 experts/85 attendees of the 8th EUSTAR SSc course. Light's kappa was 1/0.92 at the 8th EULAR capillaroscopy course, and 1/0.87 at the 8th EUSTAR SSc course. C Conclusion: For the first time, a clinical expert based fast track decision algorithm has been developed to differentiate a “non-scleroderma” from a “scleroderma pattern” on capillaroscopic images, demonstrating excellent reliability when applied by capillaroscopists with varying levels of expertise versus the principal expert and corroborated with external validation.Wo
    corecore