69 research outputs found

    Desarrollo de métodos de caracterización y autentificación de aceites de oliva y de otros aceites vegetales

    Get PDF
    Se han desarrollado métodos rápidos y sensibles para la caracterización de aceites vegetales en función de su origen botánico, y para la caracterización y autentificación de aceites de oliva en relación a su calidad, origen genético y geográfico. En primer lugar, se establecieron los contenidos de tocoferoles y tocotrienoles en aceites de distinto origen botánico mediante electrocromatografía capilar (CEC) y nano cromatografía líquida (LC), y los contenidos de esteroles mediante cromatografía líquida ultra-rápida (UPLC) y CEC. Por otro lado, se aplicaron herramientas quimiométricas como el análisis discriminante lineal (LDA), con el fin de desarrollar métodos capaces de clasificar los aceites vegetales en función de su origen botánico. Para ello, se utilizaron los espectros de infrarrojo de transformada de Fourier (FTIR), el perfil de la fracción alcohólica establecido mediante HPLC usándose la espectrometría de masas (MS) como técnica de detección, y los perfiles de aminoácidos y esteroles obtenidos bien por infusión directa en MS o mediante HPLC-UV-Vis. Posteriormente, se desarrollaron métodos capaces de evaluar la calidad del aceite de oliva, utilizándose el perfil de ácidos grasos libres obtenido mediante infusión directa en MS para construir modelos de LDA capaces de clasificar las muestras en función de su calidad. Por otro lado, se desarrolló un método olfatométrico usando matrices de sensores de óxidos metálicos, para clasificar diversos aceites en función del umbral sensorial, establecido previamente por un panel de cata, de los defectos organolépticos típicos de los aceites de oliva. Estos mismos datos se usaron para cuantificar el porcentaje de defecto presente en las muestras. Por otro lado, y mediante la construcción de modelos de LDA, se desarrollaron métodos capaces de clasificar los aceites de oliva virgen extra (EVOO) en función de su variedad genética. Para ello, se utilizaron los perfiles de ácidos grasos libres y compuestos fenólicos establecidos mediante MS de infusión directa, los perfiles de esteroles establecidos mediante HPLC-MS y UPLC-MS y los espectros de FTIR. A su vez, se desarrollaron métodos con el fin de clasificar EVOOs en función de su origen geográfico, usándose para ello los perfiles de compuestos fenólicos establecidos mediante CEC. Por último, se estudiaron los productos de oxidación del aceite de oliva, y se desarrollaron métodos para su evaluación. Se estudiaron los cambios producidos durante el almacenamiento en dos alícuotas de un aceite de oliva que diferían en su contenido de compuestos fenólicos, ya que una de las mismas fue sometida a un proceso previo de extracción de los mismos. Ambas alícuotas se sometieron a un proceso de envejecimiento acelerado durante 7 semanas, analizándose una porción de cada una de ellas una vez a la semana. Se estudiaron las diferencias obtenidas en los valores de acidez libre, absorbancia en el UV, índice de peróxidos, estabilidad oxidativa, contenido en ácidos grasos y en tocoferoles en función del contenido de fenoles en la muestra de partida, así como la evolución de estos valores con el envejecimiento. También se estudió la transformación experimentada por los compuestos fenólicos durante todo el proceso de oxidación mediante HPLC-MS. Estas mismas muestras fueron también analizadas mediante infusión directa en el MS, y mediante una matriz de sensores de óxidos metálicos con el fin de poderlas clasificar en función de su estado oxidativo. Por último, se construyeron modelos de regresión lineal múltiple con el fin de predecir el contenido de ácidos grasos oxidados de diversas muestras de aceite de oliva, bien mediante FTIR o mediante sensores de óxidos metálicos.The objective of this PhD thesis was the development of fast and sensitive methods for the characterization of vegetable oils according to their botanical origin, and for the characterization and authentication of olive oils in relation to their quality, genetic and geographical origin. For this purpose, the content of tocopherols and tocotrienols in different vegetable oils have been determined by capillary electrochromatography (CEC) and nano liquid chromatography (LC), being sterol contents established by ultra-fast liquid chromatography (UPLC) and CEC. On the other hand, the use of linear discriminant analysis (LDA) was proposed to classify vegetable oils according to their botanical origin using as predictors Fourier transform infrared spectra (FTIR) data, alcohol profiles established by HPLC using mass spectrometry (MS) as detector, and amino acid profiles established by both direct infusion MS and HPLC-UV-Vis. Methods to evaluate olive oil quality have been also developed by using fatty acid profiles as predictors to construct LDA models capable of classifying oils according to their quality. An olfactometric method has been also proposed to classify oils according to the sensory threshold (previously established by a sensory panel) of the different olive oil defects. These data was also used to quantify defect percentage in the samples. LDA models have been also constructed to classify extra virgin olive oils (EVOOs) according to their genetic variety using as predictors FTIR data, fatty acid and phenolic profiles established by direct infusion MS and sterol profiles established by HPLC-MS and UPLC-MS. LDA models to classify EVOOs according to their geographical origin have been also constructed using phenolic profiles established by CEC. Finally, methods for the evaluation of olive oil oxidation products have been also developed, in which the chemical changes produced in olive oil samples containing different phenolic contents during an accelerated storage treatment were studied. These samples were also analyzed by direct infusion MS and electronic nose to classify them according to their oxidative status. Finally, multiple linear regression models were constructed to predict oxidized fatty acid contents of several olive oils previously established by FTIR or by electronic nose

    Monitoring crustal movements and sea level in Lanzarote

    Get PDF
    The Institute of Astronomy and Geodesy is measuring sea level variations in Lanzarote Island by two automated tide gauges of precision since 1993. In order to obtain "real" sea level variations a permanent GPS station has been installed near the tide gauges. The goal of this GPS station is to measurement vertical crustal movements in order to obtain absolute sea level variations removing these movements from tide gauge data. A vertical tie with high accuracy between the reference point of the pillar where the GPS antenna is installed and the tide gauges bench marks is absolutely necessary. We have carried out this altimetric link yearly since year 2000. Methods of repeated geometric and trigonometric levelling of very short tracts have been used due to the great level difference existent. The control of the local stability of the pillar where the GPS antenna has been established, is carried out by a micro-geodetic control network building around it. This network of 13 benchmarks has been regularly observed by classic and GPS geodetic techniques in years 2000, 2001, 2002, 2003 and 2004. The data of these campaigns have been processed by different types of adjustments in the same reference system. The precision of the measurements and the reliability of the networks have been calculated. In this work the results obtained, the evaluation of the altimetric links and levelling campaigns, and the comparison of the levels of different measurements are presented

    Cinema i filosofia. Com ensenyar filosofia amb l'ajut del cinema

    Get PDF
    Amb l'ús de pel·lícules, Plató (La rosa porpra del Caire), Occam (El nom de la rosa), Galileu (Galileu Galilei), Descartes (Johnny agafà el seu fusell), Hume (Dr. Jekyll i Mr. Hyde), Rousseau (Les amistats perilloses), Marx (L'empremta), Nietzsche (Apocalypse Now) i Freud (Marnie, la lladre) són analitzats a la primera part del llibre, desenvolupant tot un programa d'Història de la Filosofia. A la segona part, des d'una aproximació temàtica a disciplines filosòfiques, com ara l'Antropologia (A la recerca del foc), l'Etnologia (El cel protector), l'Epistemologia (La capsa de música) i l'Ètica (Delictes i faltes), s'aborden qüestions com l'antropogènesi, la diversitat cultural, les formes d'argumentació, els valors, etc

    Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties

    Full text link
    [EN] This work aimed to characterise four seaweed species: nori (Phorphyra), kombu (Laminaria), wakame (Undaria) and sea spaghetti (Himanthalia elongata). Their nutritional composition, total phenolic compounds (TPC), antioxidant capacity, oil and water holding capacity (OHC and WHC), and swelling capacity (SC) were determined. Wakame and nori exhibited the highest proteins contents, rich in essential amino acids and in those related to umami flavour. All the samples had a low lipid content and high ash content values. High fibre levels were observed, especially in kombu. The TPC content and antioxidant capacity of sea spaghetti was significantly higher than in the other samples. The OHC, WHC and SC of the seaweeds demonstrated their potential influence on texture of food products. The incorporation of these seaweeds into different foodstuffs could entail an improvement of the nutritional quality and texture properties, and could also reduce the use of Na and synthetic additives.The reported experiment forms part of a project financially supported by the Universitat Politècnica de València ( SaPesAl (UPV-FE-2014-55)), which the authors gratefully acknowledge. M.J. Lerma-García thanks the Universitat Politècnica de València for a postdoctoral contract (PAID-10-14)Fernández Segovia, I.; Lerma-García, MJ.; Fuentes López, A.; Barat Baviera, JM. (2018). Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Research International. 111:212-219. https://doi.org/10.1016/j.foodres.2018.05.037S21221911

    Classification of Pecorino cheeses produced in Italy according to their ripening time and manufacturing technique using Fourier transform infrared spectroscopy.

    Get PDF
    Fourier-transform infrared spectroscopy, followed by linear discriminant analysis of the spectral data, was used to classify Italian Pecorino cheeses according to their ripening time and manufacturing technique. The Fourier transform infrared spectra of the cheeses were divided into 18 regions and the normalized absorbance peak areas within these regions were used as predictors. Linear discriminant analysis models were constructed to classify Pecorino cheeses according to different ripening stages (hard and semi-hard) or according to their manufacturing technique (fossa and nonfossa cheeses). An excellent resolution was achieved according to both ripening time and manufacturing technique. Also, a final linear discriminant analysis model considering the 3 categories (hard nonfossa, hard fossa, and semi-hard nonfossa) was constructed. A good resolution among the 3 categories was obtained

    A comparison between NIR and ATR-FTIR spectroscopy for varietal differentiation of Spanish intact almonds

    Full text link
    [EN] The rapid and easy classification of almond varieties with similar morphology, different quality properties and, in most cases, different prices is interesting to protect both the almond industry and the consumers from fraud. Therefore, in this work, intact almond kernels from four Spanish varieties (`Guara¿, `Rumbeta¿, `Marcona¿ and `Planeta¿) were analysed using both near infrared (NIR) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. After spectra measurement, NIR and ATR-FTIR spectral data were pre-treated and employed to construct two classification methods (partial least square-discriminant analysis (PLS-DA) and quadratic discriminant analysis (QDA)) in order to check their ability to classify almonds according to their variety. The best overall accuracies (94.45%) were obtained with the PLS-DA model of ATR-FTIR and the QDA model of NIR data. These results confirm that both spectroscopic techniques, if the optimal statistical model is selected, are powerful tools to reliably discriminate almonds according to their varieties.Victoria Cortés López thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors wish to thank the cooperative Agricoop for kindly providing the samples used in the experiments. This work was partially funded by INIA and FEDER funds through project RTA2015-00078-00-00.Cortes-Lopez, V.; Barat Baviera, JM.; Talens Oliag, P.; Blasco, J.; Lerma-García, MJ. (2018). A comparison between NIR and ATR-FTIR spectroscopy for varietal differentiation of Spanish intact almonds. Food Control. 94:241-248. https://doi.org/10.1016/j.foodcont.2018.07.020S2412489

    ¿Comentario filosófico de textos o comentario de textos filosóficos?

    Get PDF
    Clásicamente el comentario de textos ha sido un elemento en la formación académica filosófica y su dominio, un requisito para el acceso a la docencia. Sorprendentemente, esta técnica de aprendizaje disfruta actualmente de una privilegiada actualidad, ya que resulta metodología clave en los cambios curriculares de la Filosofía en la enseñanza preuniversitaria. No sería necesario recordar cómo anteriores intentos de sustituir el programa oficial ya habían considerado la conveniencia de incluir lecturas de filósofos en la perspectiva del comentario de textos. Estos intentos, sin embargo, no alcanzaron sus objetivos por un conjunto de razones, como por ejemplo las inercias del sistema (entre las cuales no es despreciable la presencia final de una prueba de selectividad), los obstáculos de la propia estructura educativa e, incluso, la falta de actualización en las innovaciones metodológicas propuestas. Aunque no consideramos que esta última sea la razón fundamental de la triste presencia curricular de la Filosofía, como profesores entendemos que nuestra aportación radica actualmente en fundamentar y documentar un debate, la marginación del cual no haría más que agravar la situación comentada. Aunque las posiciones teóricas en la Didáctica de la Filosofía alemana son muy variadas, por lo que respecta a comentario de textos resultan especialmente significativas aquellas que podríamos denominar orientación dialógico-pragmática y paidológica. La orientacion dialógico-pragmática, de la cual veremos más adelante las aportaciones de Ekkehard Martens, Klaus Langebeck, Gisela Raupach-Strey y Ute Siebert, propone lo que a efectos expositivos denominaremos 'comentario filosófico de textos'. Por el contrario, Wulff D. Rehfus, Helmut Conrads, Michael Müller y Johannes Rohbeck abogan, en una orientación paidológica, por el 'comentario de textos filosóficos'

    Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

    Full text link
    [EN] Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma, color, and healthy properties, and are commodities of high economic value worldwide. Wide ranges of conventional methods have been used for years to guarantee cocoa quality. Recently, however, demand for global cocoa and the requirements of sensory, functional, and safety cocoa attributes have changed. On the one hand, society and health authorities are increasingly demanding new more accurate quality control tests, including not only the analysis of physicochemical and sensory parameters, but also determinations of functional compounds and contaminants (some of which come in trace quantities). On the other hand, increased production forces industries to seek quality control techniques based on fast, nondestructive online methods. Finally, an increase in global cocoa demand and a consequent rise in prices can lead to future cases of fraud. For this reason, new analytes, technologies, and ways to analyze data are being researched, developed, and implemented into research or quality laboratories to control cocoa quality and authenticity. The main advances made in destructive techniques focus on developing new and more sensitive methods such as chromatographic analysis to detect metabolites and contaminants in trace quantities. These methods are used to assess cocoa quality; study new functional properties; control cocoa authenticity; or detect frequent emerging frauds. Regarding nondestructive methods, spectroscopy is the most explored technique, which is conducted within the near infrared range, and also within the medium infrared range to a lesser extent. It is applied mainly in the postharvest stage of cocoa beans to analyze different biochemical parameters or to assess the authenticity of cocoa and its derivatives.The authors wish to acknowledge the financial assistance provided by the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). Maribel Quelal Vásconez thanks the Ministry Higher Education, Science, Technology, and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant.Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Talens Oliag, P.; Barat Baviera, JM. (2020). Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety. 19(2):448-478. https://doi.org/10.1111/1541-4337.12522S448478192Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2018). Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture, 4(1), 1483061. doi:10.1080/23311932.2018.1483061Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. doi:10.1080/19393210.2017.1420700Acierno, V., Alewijn, M., Zomer, P., & van Ruth, S. M. (2018). Making cocoa origin traceable: Fingerprints of chocolates using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control, 85, 245-252. doi:10.1016/j.foodcont.2017.10.002Aculey, P. C., Snitkjaer, P., Owusu, M., Bassompiere, M., Takrama, J., Nørgaard, L., … Nielsen, D. S. (2010). Ghanaian Cocoa Bean Fermentation Characterized by Spectroscopic and Chromatographic Methods and Chemometrics. Journal of Food Science, 75(6), S300-S307. doi:10.1111/j.1750-3841.2010.01710.xAfoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chemistry, 113(1), 208-215. doi:10.1016/j.foodchem.2008.07.088Afoakwa, E. O., Quao, J., Takrama, J., Budu, A. S., & Saalia, F. K. (2011). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097-1105. doi:10.1007/s13197-011-0446-5Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. International Journal of Spectroscopy, 2013, 1-36. doi:10.1155/2013/341402Álvarez, C., Pérez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990Agricultural and Processed Food Products Export Development Authority (APEDA). (2015).Export statement. Retrieved fromhttp://agriexchange.apeda.gov.in/indexp/exportstatement.aspxAprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. doi:10.1016/j.scitotenv.2017.06.122Assa, A., Noor, A., Yunus, M. R., Misnawi, & Djide, M. N. (2018). Heavy metal concentrations in cocoa beans (Theobroma cacaoL.) originating from EastLuwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979, 012011. doi:10.1088/1742-6596/979/1/012011Barbin, D. F., Maciel, L. F., Bazoni, C. H. V., Ribeiro, M. da S., Carvalho, R. D. S., Bispo, E. da S., … Hirooka, E. Y. (2018). Classification and compositional characterization of different varieties of cocoa beans by near infrared spectroscopy and multivariate statistical analyses. Journal of Food Science and Technology, 55(7), 2457-2466. doi:10.1007/s13197-018-3163-5Belo, R. F. C., Figueiredo, J. P., Nunes, C. M., Pissinatti, R., Souza, S. V. C. de, & Junqueira, R. G. (2017). Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrometry. Journal of Chromatography B, 1053, 87-100. doi:10.1016/j.jchromb.2017.03.017Belščak, A., Komes, D., Horžić, D., Ganić, K. K., & Karlović, D. (2009). Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Research International, 42(5-6), 707-716. doi:10.1016/j.foodres.2009.02.018Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024Beulens, A. J. M., Broens, D.-F., Folstar, P., & Hofstede, G. J. (2005). Food safety and transparency in food chains and networks Relationships and challenges. Food Control, 16(6), 481-486. doi:10.1016/j.foodcont.2003.10.010Bolliger, S., Zeng, Y., & Windhab, E. J. (1999). In-line measurement of tempered cocoa butter and chocolate by means of near-infrared spectroscopy. Journal of the American Oil Chemists’ Society, 76(6), 659-667. doi:10.1007/s11746-999-0157-5Bonvehí, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1-2), 19-29. doi:10.1007/s00217-005-1147-yBratinova S. Karasek L. Buttinger G. &Wenzl T.(2015).Report on the 16th Interlaboratory comparison organnnsed by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons EUR 27558 15. EU.https://doi.org/10.2787/279750.Brera, C., Grossi, S., & Miraglia, M. (2005). Interlaboratory Study for Ochratoxin A Determination in Cocoa Powder Samples. Journal of Liquid Chromatography & Related Technologies, 28(1), 35-61. doi:10.1081/jlc-200038574Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171. doi:10.1016/s0169-7439(97)00032-4Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016Cambrai, A., Marcic, C., Morville, S., Sae Houer, P., Bindler, F., & Marchioni, E. (2010). Differentiation of Chocolates According to the Cocoa’s Geographical Origin Using Chemometrics. Journal of Agricultural and Food Chemistry, 58(3), 1478-1483. doi:10.1021/jf903471eCAOBISCO‐ECA‐FCC. (2015).Cocoa beans: Chocolate and cocoa industry quality requirements. Retrieved fromhttp://www.cocoaquality.eu/Caporaso, N., Whitworth, M. B., Fowler, M. S., & Fisk, I. D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351. doi:10.1016/j.foodchem.2018.03.039CBI. (2016).CBI trade statistics: Cocoa in Europe. Retrieved fromhttps://www.cbi.eu/sites/default/files/market_information/researches/trade-statistics-europe-cocoa-2016.pdfChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. doi:10.1016/j.scitotenv.2015.06.106Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150, 57-62. doi:10.1016/j.chemosphere.2016.02.013Chetschik, I., Kneubühl, M., Chatelain, K., Schlüter, A., Bernath, K., & Hühn, T. (2017). Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. Journal of Agricultural and Food Chemistry, 66(10), 2467-2472. doi:10.1021/acs.jafc.6b05008Codex Alimentarius. (2014).Codex Alimentarius Cocoa‐ Cocoa liquor.CODEX STAN 228–2001. (2001).General methods of analysis for contaminants CODEX STAN 228–2001.Cordella, M., Torri, C., Adamiano, A., Fabbri, D., Barontini, F., & Cozzani, V. (2012). Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening. Journal of Hazardous Materials, 231-232, 26-35. doi:10.1016/j.jhazmat.2012.06.030Cortés, V., Blasco, J., Aleixos, N., Cubero, S., & Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology, 85, 138-148. doi:10.1016/j.tifs.2019.01.015Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between Procyanidin and Flavor Contents of Cocoa Liquors from Different Origins. Journal of Agricultural and Food Chemistry, 52(20), 6243-6249. doi:10.1021/jf040105bCrafack, M., Keul, H., Eskildsen, C. E., Petersen, M. A., Saerens, S., Blennow, A., … Nielsen, D. S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Research International, 63, 306-316. doi:10.1016/j.foodres.2014.04.032Crouzillat D. Bellanger L. Rigoreau M. Bucheli P. &Pétiard V.(2000).Genetic structure characterisation and selection of Nacional cocoa compared to other genetic groups. In International Workshop on New Technologies and Cocoa Breeding.Cubero-Leon, E., Bouten, K., Senyuva, H., Stroka, J., Adam, M., … Bakalova, D. (2017). Determination of Ochratoxin A in Black and White Pepper, Nutmeg, Spice Mix, Cocoa, and Drinking Chocolate by High-Performance Liquid Chromatography Coupled with Fluorescence Detection: Collaborative Study. Journal of AOAC INTERNATIONAL, 100(5), 1458-1468. doi:10.5740/jaoacint.16-0430D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550-559. doi:10.1016/j.foodres.2017.06.007Di Mattia, C., Martuscelli, M., Sacchetti, G., Beheydt, B., Mastrocola, D., & Pittia, P. (2014). Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Research International, 63, 367-372. doi:10.1016/j.foodres.2014.04.009Dickens, B., & Dickens, S. H. (1999). Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity. Journal of Research of the National Institute of Standards and Technology, 104(2), 173. doi:10.6028/jres.104.012Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., … Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food Research International, 77, 657-669. doi:10.1016/j.foodres.2015.09.019DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-yEuropean Commission (EU). (2011).Commission regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European Union 215 4–8.Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133FCC. (2018 June 20).Services ‐ Rules | The Federation of Cocoa Commerce. Retrieved fromhttp://www.cocoafederation.com/services/rulesForsyth, W. G. C., & Quesnel, V. C. (1957). Cacao polyphenolic substances. 4. The anthocyanin pigments*. Biochemical Journal, 65(1), 177-179. doi:10.1042/bj0650177Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159García-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159-1165. doi:10.1016/j.jfoodeng.2006.04.005Gianfredi, V., Salvatori, T., Nucci, D., Villarini, M., & Moretti, M. (2018). Can chocolate consumption reduce cardio-cerebrovascular risk? A systematic review and meta-analysis. Nutrition, 46, 103-114. doi:10.1016/j.nut.2017.09.006Goodacre, R., & Anklam, E. (2001). Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. Journal of the American Oil Chemists’ Society, 78(10), 993-1000. doi:10.1007/s11746-001-0377-xHashimoto, J. C., Lima, J. C., Celeghini, R. M. S., Nogueira, A. B., Efraim, P., Poppi, R. J., & Pallone, J. A. L. (2018). Quality Control of Commercial Cocoa Beans (Theobroma cacao L.) by Near-infrared Spectroscopy. Food Analytical Methods, 11(5), 1510-1517. doi:10.1007/s12161-017-1137-2Hinneh, M., Semanhyia, E., Van de Walle, D., De Winne, A., Tzompa-Sosa, D. A., Scalone, G. L. L., … Dewettinck, K. (2018). Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International, 111, 607-620. doi:10.1016/j.foodres.2018.05.064Huang, X., Teye, E., Sam-Amoah, L. K., Han, F., Yao, L., & Tchabo, W. (2014). Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. Anal. Methods, 6(14), 5008-5015. doi:10.1039/c4ay00223gHue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005Hue, C., Gunata, Z., Breysse, A., Davrieux, F., Boulanger, R., & Sauvage, F. X. (2016). Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chemistry, 192, 958-964. doi:10.1016/j.foodchem.2015.07.115Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069ICCO. (2012).Physical and chemical information on cocoa beans butter mass and powder. Retrieved fromhttps://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.htmlICCO. (2018).How is the quality of cocoa checked—by hand by machine?Retrieved fromhttps://www.icco.org/faq/59-fermentation-a-drying/108-how-is-the-quality-of-cocoa-checked-by-hand-by-machine.htmlICCO. (2019).Leading countries of cocoa bean processing worldwide 2018/2019 | Statista. Retrieved fromhttps://www.statista.com/statistics/238242/leading-countries-of-global-cocoa-bean-processing/Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256-262. doi:10.1016/j.foodchem.2014.11.019Ishaq, S., & Jafri, L. (2017). Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1(1), 1-5. doi:10.26480/msp.01.2017.01.05Jackson E. Farrington D. S. &Henderson K.(1986).The analysis of agricultural materials: A manual of the analytical methods used by the Agricultural Development and Advisory Service. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service (No. 427 (Ed. 3)).Jahurul, M. H. A., Soon, Y., Shaarani Sharifudin, M., Hasmadi, M., Mansoor, A. H., Zaidul, I. S. M., … Jinap, S. (2018). Bambangan (Mangifera pajang ) kernel fat: a potential new source of cocoa butter alternative. International Journal of Food Science & Technology, 53(7), 1689-1697. doi:10.1111/ijfs.13753Jinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67-75. doi:10.1002/jsfa.2740650111Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084Krähmer, A., Gudi, G., Weiher, N., Gierus, M., Schütze, W., & Schulz, H. (2013). Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. Vibrational Spectroscopy, 68, 96-103. doi:10.1016/j.vibspec.2013.05.012Kruszewski, B., Obiedziński, M. W., & Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. Journal of Food Composition and Analysis, 66, 127-135. doi:10.1016/j.jfca.2017.12.012Kubíc̆ková, A., Kubíc̆ek, V., & Coufal, P. (2011). UV-VIS detection of amino acids in liquid chromatography: Online post-column solid-state derivatization with Cu(II) ions. Journal of Separation Science, 34(22), 3131-3135. doi:10.1002/jssc.201100561Kucha, C., Liu, L., & Ngadi, M. (2018). Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors, 18(2), 377. doi:10.3390/s18020377Kumari, N., Grimbs, A., D’Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 111, 137-147. doi:10.1016/j.foodres.2018.05.010Kutsanedzie, F. Y. H., Chen, Q., Hassan, M. M., Yang, M., Sun, H., & Rahman, M. H. (2018). Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chemistry, 240, 231-238. doi:10.1016/j.foodchem.2017.07.117Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398tLevasseur-Garcia, C. (2018). Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins, 10(1),

    Presence of palm oil in foodstuffs: consumers' perception

    Get PDF
    Purpose - The purpose of this paper is to determine the presence of palm oil in food products on sale, and to study and compare consumers' opinions about this oil type in Spain (importing country) and Peru (producing country). Design/methodology/approach - Recent news published in both countries, which could influence consumer perceptions, were analysed. A study on the labelling of foodstuffs in Spain was carried out, as was a survey with Spanish and Peruvian consumers. Findings - Palm oil was found in a large number of products and in a wide range of foods, especially those from the bakery sector. The percentages of saturated fats varied substantially within the same product type. Spanish consumers showed much more interest in the labelling and information on nutritional properties, especially energy values, saturated fats and sugars, while Peruvians focused more on energy values, and protein, vitamin and mineral contents. In Spain, palm oil was considered the worst quality fat/oil and had a clearly negative effect on both health and the environment. In Peru, palm oil was neither perceived by the majority of respondents as low quality oil nor associated with negative health effects. However, they were aware of the environmental problems that could result from its production. Originality/value - These results confirm that the food industry should make efforts to reduce or replace palm oil in foods, mainly in Spain, as most consumers believe that palm oil negatively affects their health and the environmen

    Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis

    Full text link
    [EN] Cocoa shell must be removed from the cocoa bean before or after the roasting process. In the case of a low efficient peeling process or the intentional addition of cocoa shell to cocoa products (i.e. cocoa powders) to increase the economic benefit, quality of the final product could be unpleasantly affected. In this scenario, the Codex Alimentarius on cocoa and chocolate has established that cocoa cake must not contain more than 5% of cocoa shell and germ (based on fat-free dry matter). Traditional analysis of cocoa shell is very laborious. Thus, the aim of this work is to develop a methodology based on near infrared (NIR) spectroscopy and multivariate analysis for the fast detection of cocoa shell in cocoa powders. For this aim, binary mixtures of cocoa powder and cocoa shell containing increasing proportions of cocoa shell (up to ca. 40% w/w based on fat-free dried matter) have been prepared. After acquiring NIR spectra (1100-2500 nm) of pure samples (cocoa powder and cocoa shell) and mixtures, qualitative and quantitative analysis were done. The qualitative analysis was performed by using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), finding that the model was able to correctly classify all samples containing less than 5% of cocoa shell. The quantitative analysis was performed by using a partial least squares (PLS) regression. The best PLS model was the one constructed using extended multiple signal correction plus orthogonal signal correction pre-treatment using the 6 main wavelengths selected according to the Variable Importance in Projection (VIP) scores. Determination coefficient of prediction and root mean square error of prediction values of 0.967 and 2.43, respectively, confirmed the goodness of the model. According to these results it is possible to conclude that NIR technology in combination with multivariate analysis is a good and fast tool to determine if a cocoa powder contains a cocoa shell content out of Codex Alimentarius specifications.The authors wish to acknowledge the financial assistance provided the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). M. A. Quelal thanks the Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant.Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat Baviera, JM.; Talens Oliag, P. (2019). Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis. Food Control. 99:68-72. https://doi.org/10.1016/j.foodcont.2018.12.028S68729
    corecore