54 research outputs found

    Injection of CO2-saturated brine in geological reservoir: a way to enhanced storage safety

    Get PDF
    Injection of free-phase supercritical CO2 into deep geological reservoirs is associated with risk of considerable return flows towards the land surface due to the buoyancy of CO2, which is lighter than the resident brine in the reservoir. Such upward movements can be avoided if CO2 is injected in the dissolved phase (CO2aq). In this work, injection of CO2-saturated brine in a subsurface carbonate reservoir was modelled. Physical and geochemical interactions of injected low-pH CO2-saturated brine with the carbonate minerals (calcite, dolomite and siderite) were investigated in the reactive transport modelling. CO2-saturated brine, being low in pH, showed high reactivity with the reservoir minerals, resulting in a significant mineral dissolution and CO2 conversion in reactions. Over the injection period of 10 yr, up to 16% of the injected CO2 was found consumed in geochemical reactions. Sorption included in the transport analysis resulted in additional quantities of CO2 mass stored. However, for the considered carbonate minerals, the consumption of injected CO2aq was found mainly in the form of ionic trapping.Peer ReviewedPostprint (author's final draft

    Injection of CO2-saturated brine in geological reservoir: a way to enhanced storage safety

    Get PDF
    Injection of free-phase supercritical CO2 into deep geological reservoirs is associated with risk of considerable return flows towards the land surface due to the buoyancy of CO2, which is lighter than the resident brine in the reservoir. Such upward movements can be avoided if CO2 is injected in the dissolved phase (CO2aq). In this work, injection of CO2-saturated brine in a subsurface carbonate reservoir was modelled. Physical and geochemical interactions of injected low-pH CO2-saturated brine with the carbonate minerals (calcite, dolomite and siderite) were investigated in the reactive transport modelling. CO2-saturated brine, being low in pH, showed high reactivity with the reservoir minerals, resulting in a significant mineral dissolution and CO2 conversion in reactions. Over the injection period of 10 yr, up to 16% of the injected CO2 was found consumed in geochemical reactions. Sorption included in the transport analysis resulted in additional quantities of CO2 mass stored. However, for the considered carbonate minerals, the consumption of injected CO2aq was found mainly in the form of ionic trapping

    Evolution of the hydro-climate system in the Lake Baikal basin

    Get PDF
    SummaryClimatic changes can profoundly alter hydrological conditions in river basins. Lake Baikal is the deepest and largest freshwater reservoir on Earth, and has a unique ecosystem with numerous endemic animal and plant species. We here identify long-term historical (1938–2009) and projected future hydro-climatic trends in the Selenga River Basin, which is the largest sub-basin (>60% inflow) of Lake Baikal. Our analysis is based on long-term river monitoring and historical hydro-climatic observation data, as well as ensemble mean and 22 individual model results of the Coupled Model Intercomparison Project, Phase 5 (CMIP5). Study of the latter considers a historical period (from 1961) and projections for 2010–2039 and 2070–2099. Observations show almost twice as fast warming as the global average during the period 1938–2009. Decreased intra-annual variability of river discharge over this period indicates basin-scale permafrost degradation. CMIP5 ensemble projections show further future warming, implying continued permafrost thaw. Modelling of runoff change, however, is highly uncertain, with many models (64%) and their ensemble mean failing to reproduce historical behaviour, and with indicated future increase being small relative to the large differences among individual model results

    SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Get PDF
    We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-), biogens (NO3-, NO2-, PO43-)(C, mg/l), heavy metal (Fesum, Mn, Pb) and dissolved load (DL, kg/day), as far as suspended sediment concentration (SSC, mg/l) and suspended load (SL, kg/day) along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia). The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located). In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys

    Data for wetlandscapes and their changes around the world

    Get PDF
    Geography and associated hydrological, hydroclimate and land-use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment – the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land-use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature and annual land-use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape and on the availability and accessibility of associated local data. This novel database (available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarnia et al., 2019) can support site assessments; cross-regional comparisons; and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions, and changes in whole-wetlandscape functions and ecosystem services

    Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands

    Get PDF
    Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the GlobalWetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-'Improve water quality'; 2.4-'Sustainable food production'; and 12.2-'Sustainable management of resources'. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-'Efficient resource consumption'; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: 'Basic human needs', 'Sustainable tourism', 'Environmental impact in urban wetlands', and 'Improving and conserving environment'. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a 'wise use' of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. © 2019 by the authors

    Flotation chemicals at Swedish mines : Review of their potential environmental impact

    No full text
    Many chemicals used in froth flotation by the mining industry are known to be toxic to ecosystems. Yet much is still unknown about their mobility and persistence when being released to the natural environment. In colder climates, the low temperatures can furthermore decrease or inhibit degradation of the chemicals, potentially increasing environmental impacts accordingly. This report reviews the current knowledge about four common flotation chemicals used in Sweden; Flomin (xanthates), Atrac, Danafloat, and MagnaFloc. Ether diamines and phosphoric acid esters were also included due to their future potential relevance. The literature review found substantial information regarding xanthates and their toxicity, however few studies report actual monitoring in ground/streamwater systems downstream of mines. Much less information was available for the remaining chemicals, especially phosphoric acid esters with no ecotoxicological data available. Further, general knowledge gaps related to flotation chemicals include: few long-term studies are conducted compared to short-term toxicity, several chemicals show temperature dependence during degradation, and lack of discharge data adjacent to spillway positions for released process water prevents thorough assessment of dilution effects. Recommendations for further work is to initiate screening for xanthates and Danafloat, however for ether diamines and REE beneficiation more research is needed on their potential environmental impacts
    corecore