15 research outputs found

    Mirror Activity in the Macaque Motor System

    Get PDF
    Mirror neurons (MirNs) within ventral premotor cortex (PMv) and primary motor cortex (M1), including pyramidal tract neurons (PTNs) projecting to the spinal cord, modulate their activity during both the execution and observation of motor acts. However, movement is not produced in the latter condition, and mirror responses cannot be explained by lowlevel muscle activity. Relatively reduced activity in M1 during observation may help to suppress movement. Here, we examined the extent to which activity at different stages of action observation reflects grasp representation and suppression of movement across multiple levels of the mirror system in monkeys and humans. We recorded MirNs in M1 and F5 (rostral PMv), including identified PTNs, in two macaque monkeys as they performed, observed, and withheld reach-to-grasp actions. Time-varying population activity was more distinct between execution and observation in M1 than in F5, and M1 activity in the lead-up to the observation of movement onset shared parallels with movement withholding activity. In separate experiments, modulation of short-latency responses evoked in hand muscles by pyramidal tract stimulation revealed modest grasp-specific facilitation at the spinal level during grasp observation. This contrasted with a relative suppression of excitability prior to observed movement onset or when monkeys simply withheld movement. Additional cortical recording experiments examined how contextual factors, such as observing to imitate, observing while engaged in action, or observation with reduced visual information, modulated mirror activity in M1 and F5. Finally, single-pulse transcranial magnetic stimulation (TMS) in healthy human volunteers was used to examine changes in corticospinal excitability (CSE) during action observation and withholding. Overall, the results reveal distinctions in the profile of mirror activity across premotor and motor areas. While F5 maintains a more abstract representation of grasp independent of the acting agent, a balance of excitation and inhibition in motor cortex and spinal circuitry during action observation may support a flexible dissociation between initiation of grasping actions and representation of observed grasp

    Frame-Transformation Theory in Electron-Molecule Scattering.

    Get PDF
    The frame-transformation theory of electron scattering from molecules is critically examined near the limits of its range of applicability and the sensitivities of the rotational and vibrational cross sections on the transformation radius are quantitatively investigated. To partially correct for the breakdown of this theory near excitation thresholds, an energy-modified approximation is introduced

    Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151

    Get PDF
    Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist is responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography

    Movement initiation and grasp representation in premotor and primary motor cortex mirror neurons

    Get PDF
    Pyramidal tract neurons (PTNs) within macaque rostral ventral premotor cortex (F5) and primary motor cortex (M1) provide direct input to spinal circuitry and are critical for skilled movement control. Contrary to initial hypotheses, they can also be active during action observation, in the absence of any movement. A population-level understanding of this phenomenon is currently lacking. We recorded from single neurons, including identified PTNs, in M1 (n=187), and area F5 (n=115) as two adult male macaques executed, observed, or withheld (NoGo) reach-to-grasp actions. F5 maintained a similar representation of grasping actions during both execution and observation. In contrast, although many individual M1 neurons were active during observation, M1 population activity was distinct from execution, and more closely aligned to NoGo activity, suggesting this activity contributes to withholding of self-movement. M1 and its outputs may dissociate the initiation of movement from the representation of grasp in order to flexibly guide behaviour

    Motor Outcomes of Repetitive Transcranial Magnetic Stimulation Are Dependent on the Specific Interneuron Circuit Targeted

    No full text
    Different aspects of motor behaviour may engage distinct interneuron circuits in the human motor cortex. If so, the behavioural effects of repetitive transcranial magnetic stimulation (rTMS) protocols may critically depend on the specific circuit stimulated. We used TMS of the hand area to activate two distinct synaptic inputs to corticospinal neurons by altering the direction of current induced in the brain: posterior-anterior (PA inputs) and anterior-posterior (AP inputs). We found AP inputs to be preferentially suppressed during motor preparation in a reaction time task. We also show that preconditioning PA, but not AP, inputs with via rTMS facilitates performance of a ballistic motor task. These results suggest that behavioural effects of rTMS may be most evident when relevant interneuron circuits are targeted

    Dopamine D3 receptor binding of 18F‐fallypride: Evaluation using in vitro and in vivo PET imaging studies

    No full text
    Identification of dopamine D3 receptors (D3R) in vivo is important to understand several brain functions related to addiction. The goal of this work was to identify D3R binding of the dopamine D2 receptor (D2R)/D3R imaging agent, (18)F-fallypride. Brain slices from male Sprague-Dawley rats (n = 6) and New Zealand White rabbits (n = 6) were incubated with (18)F-fallypride and D3R selective agonist (R)-7-OH-DPAT (98-fold D3R selective). Rat slices were also treated with BP 897 (68-fold D3R selective partial agonist) and NGB 2904 (56-fold D3R selective antagonist). In vivo rat studies (n = 6) were done on Inveon PET using 18-37 MBq (18)F-fallypride and drug-induced displacement by (R)-7-OH-DPAT, BP 897 and NGB 2904. PET/CT imaging of wild type (WT, n = 2) and D2R knock-out (KO, n = 2) mice were carried out with (18)F-fallypride. (R)-7-OH-DPAT displaced binding of (18)F-fallypride, both in vitro and in vivo. In vitro, at 10 nM (R)-7-OH-DPAT, (18)F-fallypride binding in the rat ventral striatum (VST) and dorsal striatum (DST) and rabbit nucleus accumbens were reduced by ∼10-15%. At 10 μM (R)-7-OH-DPAT all regions in rat and rabbit were reduced by ≥85%. In vivo reductions for DST and VST before and after (R)-7-OH-DPAT were: low-dose (0.015 mg kg(-1)) DST -22%, VST -29%; high-dose (1.88 mg kg(-1)) DST -58%, VST -77%, suggesting D3R/D2R displacement. BP 897 and NGB 2904 competed with (18)F-fallypride in vitro, but unlike BP 897, NGB 2904 did not displace (18)F-fallypride in vivo. The D2R KO mice lacked (18)F-fallypride binding in the DST. In summary, our findings suggest that up to 20% of (18)F-fallypride may be bound to D3R sites in vivo
    corecore