11 research outputs found

    Numerical Methods for Two-Dimensional Stem Cell Tissue Growth.

    Get PDF
    Growth of developing and regenerative biological tissues of different cell types is usually driven by stem cells and their local environment. Here, we present a computational framework for continuum tissue growth models consisting of stem cells, cell lineages, and diffusive molecules that regulate proliferation and differentiation through feedback. To deal with the moving boundaries of the models in both open geometries and closed geometries (through polar coordinates) in two dimensions, we transform the dynamic domains and governing equations to fixed domains, followed by solving for the transformation functions to track the interface explicitly. Clustering grid points in local regions for better efficiency and accuracy can be achieved by appropriate choices of the transformation. The equations resulting from the incompressibility of the tissue is approximated by high-order finite difference schemes and is solved using the multigrid algorithms. The numerical tests demonstrate an overall spatiotemporal second-order accuracy of the methods and their capability in capturing large deformations of the tissue boundaries. The methods are applied to two biological systems: stratified epithelia for studying the effects of two different types of stem cell niches and the scaling of a morphogen gradient with the size of the Drosophila imaginal wing disc during growth. Direct simulations of both systems suggest that that the computational framework is robust and accurate, and it can incorporate various biological processes critical to stem cell dynamics and tissue growth

    The suitability of Zn–1.3% Fe alloy as a biodegradable implant material

    Get PDF
    Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting was examined in vitro and in vivo. The in vitro examination included immersion tests, potentiodynamic polarization and impedance spectroscopy, all in a simulated physiological environment (phosphate-buffered saline, PBS) at 37 °C. For the in vivo study, two cylindrical disks (seven millimeters diameter and two millimeters height) were implanted into the back midline of male Wister rats. The rats were examined post implantation in terms of weight gain and hematological characteristics, including red blood cell (RBC), hemoglobin (HGB) and white blood cell (WBC) levels. Following retrieval, specimens were examined for corrosion rate measurements and histological analysis of subcutaneous tissue in the implant vicinity. In vivo analysis demonstrated that the Zn–1.3%Fe implant avoided harmful systemic effects. The in vivo and in vitro results indicate that the Zn–1.3%Fe alloy corrosion rate is significantly increased compared to pure zinc. The relatively increased degradation of Zn–1.3%Fe was mainly related to microgalvanic effects produced by a secondary Zn11Fe phase

    Serum S100B levels after meningioma surgery: A comparison of two laboratory assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B protein is a potential biomarker of central nervous system insult. This study quantitatively compared two methods for assessing serum concentration of S100B.</p> <p>Methods</p> <p>A prospective, observational study performed in a single tertiary medical center. Included were fifty two consecutive adult patients undergoing surgery for meningioma that provided blood samples for determination of S100B concentrations. Eighty samples (40 pre-operative and 40 postoperative) were randomly selected for batch testing. Each sample was divided into two aliquots. These were analyzed by ELISA (Sangtec) and a commercial kit (Roche Elecsys<sup>®</sup>) for S100B concentrations. Statistical analysis included regression modelling and Bland-Altman analysis.</p> <p>Results</p> <p>A parsimonious linear model best described the prediction of commercial kit values by those determined by ELISA (y = 0.045 + 0.277*x, x = ELISA value, R<sup>2 </sup>= 0.732). ELISA measurements tended to be higher than commercial kit measurements. This discrepancy increased linearly with increasing S100B concentrations. At concentrations above 0.7 μg/L the paired measurements were consistently outside the limits of agreement in the Bland-Altman display. Similar to other studies that used alternative measurement methods, sex and age related differences in serum S100B levels were not detected using the Elecsys<sup>® </sup>(p = 0.643 and 0.728 respectively).</p> <p>Conclusion</p> <p>Although a generally linear relationship exists between serum S100B concentrations measured by ELISA and a commercially available kit, ELISA values tended to be higher than commercial kit measurements particularly at concentrations over 0.7 μg/L, which are suggestive of brain injury. International standardization of commercial kits is required before the predictive validity of S100B for brain damage can be effectively assessed in clinical practice.</p

    Numerical Methods for Two-Dimensional Stem Cell Tissue Growth.

    No full text

    The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material

    No full text
    Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting was examined in vitro and in vivo. The in vitro examination included immersion tests, potentiodynamic polarization and impedance spectroscopy, all in a simulated physiological environment (phosphate-buffered saline, PBS) at 37 °C. For the in vivo study, two cylindrical disks (seven millimeters diameter and two millimeters height) were implanted into the back midline of male Wister rats. The rats were examined post implantation in terms of weight gain and hematological characteristics, including red blood cell (RBC), hemoglobin (HGB) and white blood cell (WBC) levels. Following retrieval, specimens were examined for corrosion rate measurements and histological analysis of subcutaneous tissue in the implant vicinity. In vivo analysis demonstrated that the Zn–1.3%Fe implant avoided harmful systemic effects. The in vivo and in vitro results indicate that the Zn–1.3%Fe alloy corrosion rate is significantly increased compared to pure zinc. The relatively increased degradation of Zn–1.3%Fe was mainly related to microgalvanic effects produced by a secondary Zn11Fe phase

    Transcriptional Mechanisms Link Epithelial Plasticity to Adhesion and Differentiation of Epidermal Progenitor Cells

    Get PDF
    During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such a mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here, we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/Ovol2-deficient epidermal cells fail to undertake α-catenin-driven actin cytoskeletal reorganization and adhesive maturation and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations and defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight Ovol1 and Ovol2 as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity
    corecore