202 research outputs found

    An artificial CO-releasing metalloprotein built by histidine-selective metallation.

    Get PDF
    We report the design and synthesis of an aquacarbonyl Ru(II) dication cis-[Ru(CO)2(H2O)4](2+) reagent for histidine (His)-selective metallation of interleukin (IL)-8 at site 33. The artificial, non-toxic interleukin (IL)-8-Ru(II)(CO)2 metalloprotein retained IL-8-dependent neutrophil chemotactic activity and was shown to spontaneously release CO in live cells.We thank the European Commission (Marie Curie CIG to G.J.L.B., Marie Curie IEF to O.B.), FCT Portugal (FCT Investigator to G.J.L.B.) and the EPSRC for generous funding.This is the final published version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/c4cc10204e#!divAbstract

    MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199

    Get PDF
    Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias. Therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of research. Mutations in the MLL gene cause aggressive incurable leukemias. Benito et al. show that MLL leukemias are highly sensitive to BCL-2 inhibitors, especially when combined with drugs that target mutant MLL complex activity

    Estimating population size, density and dynamics of Pre-Pottery Neolithic villages in the central and southern Levant: an analysis of Beidha, southern Jordan

    Get PDF
    The Pre-Pottery Neolithic (PPN) of the central and southern Levant played an integral role in the Neolithic Demographic Transition (NDT) from mobile hunter-gatherer to village-based, agro-pastoralist societies. An understanding of population dynamics is essential for reconstructing the trajectories of these early village societies. However, few investigations have produced absolute estimates of population parameters for these villages and those which have base estimates on a limited methodological framework. This research examines the methodological and theoretical basis for existing estimates, and explores a range of methodologies in order to derive more empirically-robust demographic data. Results reveal that commonly utilized methodologies and population density coefficients employed for estimating PPN village populations require re-evaluation. This article presents the application of methodologies to the PPNB site of Beidha in southern Jordan

    Potential Prognostic Significance of Decreased Serum Levels of TRAIL after Acute Myocardial Infarction

    Get PDF
    BACKGROUND: Since soluble TRAIL exhibits anti-inflammatory and anti-atherosclerotic activities both in vitro and in animal models, this study was designed to assess the relationship between the serum levels of TRAIL and clinical outcomes in patients with acute myocardial infarction (AMI). METHODOLOGY/PRINCIPAL FINDINGS: Levels of TRAIL were measured by ELISA in serial serum samples obtained from 60 patients admitted for AMI, both during hospitalization and in a follow-up of 12 months, as well as in 60 healthy control subjects. Serum levels of TRAIL were significantly decreased in patients with AMI at baseline (within 24 hours from admission), compared with healthy controls, and showed a significant inverse correlation with a series of negative prognostic markers, such as CK, CK-MB and BNP. TRAIL serum levels progressively increased at discharge, but normalized only at 6-12 months after AMI. Of note, low TRAIL levels at the patient discharge were associated with increased incidence of cardiac death and heart failure in the 12-month follow-up, even after adjustment for demographic and clinical risk parameters (hazard ratio [HR] of 0.93 [95% CI, 0.89 to 0.97]; p = 0.001). CONCLUSIONS/SIGNIFICANCE: Although the number of patients studied was limited, our findings indicate for the first time that circulating TRAIL might represent an important predictor of cardiovascular events, independent of conventional risk markers

    SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4.

    Get PDF
    We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML

    Cardiac troponins: from myocardial infarction to chronic disease.

    Get PDF
    Elucidation of the physiologically distinct subunits of troponin in 1973 greatly facilitated our understanding of cardiac contraction. Although troponins are expressed in both skeletal and cardiac muscle, there are isoforms of troponin I/T expressed selectively in the heart. By exploiting cardiac-restricted epitopes within these proteins, one of the most successful diagnostic tests to-date has been developed: cardiac troponin (cTn) assays. For the past decade, cTn has been regarded as the gold-standard marker for acute myocardial necrosis: the pathological hallmark of acute myocardial infarction (AMI). Whilst cTn is the cornerstone for ruling-out AMI in patients presenting with a suspected acute coronary syndrome (ACS), elevated cTn is frequently observed in those without clinical signs indicative of AMI, often reflecting myocardial injury of 'unknown origin'. cTn is commonly elevated in acute non-ACS conditions, as well as in chronic diseases. It is unclear why these elevations occur; yet they cannot be ignored as cTn levels in chronically unwell patients are directly correlated to prognosis. Paradoxically, improvements in assay sensitivity have meant more differential diagnoses have to be considered due to decreased specificity, since cTn is now more easily detected in these non-ACS conditions. It is important to be aware cTn is highly specific for myocardial injury, which could be attributable to a myriad of underlying causes, emphasising the notion that cTn is an organ-specific, not disease-specific biomarker. Furthermore, the ability to detect increased cTn using high-sensitivity assays following extreme exercise is disconcerting. It has been suggested troponin release can occur without cardiomyocyte necrosis, contradicting conventional dogma, emphasising a need to understand the mechanisms of such release. This review discusses basic troponin biology, the physiology behind its detection in serum, its use in the diagnosis of AMI, and some key concepts and experimental evidence as to why cTn can be elevated in chronic diseases

    Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

    Get PDF
    The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
    • …
    corecore