83 research outputs found

    Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease

    Get PDF
    Human β-amyloid (Aβ) is believed to be one of the main components of Alzheimer’s disease, so reduction of Aβ is considered a key therapeutic target. Using Agrobacterium-mediated nuclear transformation, we generated transgenic tomatoes for Aβ with tandem repeats. Integration of the human Aβ gene into the tomato genome and its transcription were detected by PCR and Northern blot, respectively. Expression of the Aβ protein was confirmed by western blot and ELISA, and then the transgenic tomato line expressing the highest protein level was selected for vaccination. Mice immunized orally with total soluble extracts from the transgenic tomato plants elicited an immune response after receiving a booster. The results indicate that tomato plants may provide a useful system for the production of human Aβ antigen

    Label-free affinity screening, design and synthesis of inhibitors targeting the <i>Mycobacterium tuberculosis</i> L-alanine dehydrogenase

    Get PDF
    The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Practical Intelligent Cleaning Robot Algorithm Based on Grouping in Complex Layout Space

    No full text
    The random-based cleaning algorithm is a simple algorithm widely used in commercial vacuum cleaning robots. This algorithm has two limitations, that is, cleaning takes a long time and there is no guarantee that the cleaning will cover the whole cleaning area. This has lead to customer dissatisfaction. Thus, in recent years, many intelligent cleaning algorithms that takes into consideration information gathered from the cleaning area environment have been proposed. The plowing-based algorithm thatn when obstacle prevail, its performance is no guaranteed. In this paper, we propose the group-k algorithm that to clean the majority of the cleaning area as fast as possible. The motivation behind this is that areas close to obstacles are usually difficult for robots to handle, and hence, many require human assistance anyway. In our approach, obstacles are grouped by the complexity of the obstacles, which we refer to as &apos;complex rank&apos;, and then decide the cleaning route based on this complex rank. Results from our simulation-based experiments show that although the cleaning completion time takes longer than the plowing-based algorithm, the Group-k algorithm cleans the majority of the cleaning area faster than the plowing algorithm.clos

    N-Glycosylation Modification of Plant-Derived Virus-Like Particles: An Application in Vaccines

    No full text
    Plants have been developed as an alternative system to mammalian cells for production of recombinant prophylactic or therapeutic proteins for human and animal use. Effective plant expression systems for recombinant proteins have been established with the optimal combination of gene expression regulatory elements and control of posttranslational processing of recombinant glycoproteins. In plant, virus-like particles (VLPs), viral “empty shells” which maintain the same structural characteristics of virions but are genome-free, are considered extremely promising as vaccine platforms and therapeutic delivery systems. Unlike microbial fermentation, plants are capable of carrying out N-glycosylation as a posttranslational modification of glycoproteins. Recent advances in the glycoengineering in plant allow human-like glycomodification and optimization of desired glycan structures for enhancing safety and functionality of recombinant pharmaceutical glycoproteins. In this review, the current plant-derived VLP approaches are focused, and N-glycosylation and its in planta modifications are discussed

    Review Article N-Glycosylation Modification of Plant-Derived Virus-Like Particles: An Application in Vaccines

    No full text
    Plants have been developed as an alternative system to mammalian cells for production of recombinant prophylactic or therapeutic proteins for human and animal use. Effective plant expression systems for recombinant proteins have been established with the optimal combination of gene expression regulatory elements and control of posttranslational processing of recombinant glycoproteins. In plant, virus-like particles (VLPs), viral &quot;empty shells&quot; which maintain the same structural characteristics of virions but are genome-free, are considered extremely promising as vaccine platforms and therapeutic delivery systems. Unlike microbial fermentation, plants are capable of carrying out N-glycosylation as a posttranslational modification of glycoproteins. Recent advances in the glycoengineering in plant allow human-like glycomodification and optimization of desired glycan structures for enhancing safety and functionality of recombinant pharmaceutical glycoproteins. In this review, the current plant-derived VLP approaches are focused, and N-glycosylation and its in planta modifications are discussed. Plant-Derived Virus-Like Particle (VLP) Viruses are able to form the quaternary structure of viral capsids through molecular self-assembly of repetitive building blocks In general, bacteria, yeast, insect, and animal cells have been applied as cell-based systems to produce VLPs. The bacterial cell cultures have been explored as a VLP production platform with advantages in terms of scalability and production cost Virus-Like Particles in Plant Expression Systems Glycosylation of VLP Vaccines Even though virus-like particles-(VLPs-) based vaccines have shown promising results, commercial production systems are currently limited to eukaryotic cells such as yeast, insect, and mammalian core 1,3-fucose, and Le a containing epitopes have been considered as immunogenic glycan epitopes found in plantspecific N-glycans. Such glycan residues are not present in humans, and thus proteins could cause immune rejection inducing plant-glycan specific antibodies causing protein clearance in blood stream as well as potential allergenic effects N-Glycomodification in Plants Targeted Expression to the ER. N-glycan structures influence biofunctionality and stability of therapeutic proteins and even directly affect immunogenicity of glycosylated subunit vaccines displayed on VLP surfaces. In plants, thus, N-glycosylation pathway has been modified in order to humanize the glycan structures of glycoproteins A commonly used approach to express recombinant glycoproteins in plants is their accumulation in ER by addition of C-terminal signal H/KDEL ER retention motif Knockout of Plant-Specific Glycosyltransferases. Gene inactivation or silencing may be used to reduce or eliminate the activity of plant-specific glycosyltransferases. In a plant cell, the specific enzymes are 1,2-xylosyltransferase and core 1,3-fucosyltransferase, which are responsible for transfer of the plant-specific xylose and fucose onto the attached N-glycan. Such glycan residues are not present in humans and are thus unwanted on proteins intended for therapeutic use. The knockout of the genes that are responsible for the synthesis of these glycan epitopes 1,2-xylosyltransferase and core 1,3-fucosyltransferase provides an easy strategy to solve this problem. The feasibility of this strategy has been proven by the generation of knockout Arabidopsis thaliana plant lacking xylosyltransferase and fucosyltransferase Humanization of Plant N-Glycosylation. The immunogenic and allergenic reactions of the 1,2-xylose and core 1,3-fucose N-glycan epitopes on plant-derived glycoproteins have been a problem for application of therapeutic proteins produced from plant expression system Conclusions Taken together, plant-derived VLPs are considered safe because plants do not bear human pathogens and promising in terms of cost-effective scalability and speed of production. In fact, as far as upstream and downstream processing are concerned, plant-derived VLPs can take advantage of what has been done so far in the broader field of plantmade pharmaceuticals. Also compared to prokaryotes host cells, plants host guarantees the appropriate posttranslational modifications, such as glycosylation, often needed for proper protein function. In plants, glycoengineering has been improved to create plants able to perform the ideal glycosylation enhancing efficacy and potency of VLPs-based therapeutics. As described in this review, several strategies, focused on the inactivation and/or addition of key enzymes, can be adopted to decorate tailor-made glycoforms of VLPs in plants. Thus, plant expression systems will be further improved for production of VLPs-based vaccines with respect to their proper glycomodification and the rapid and cost-effective expression
    corecore