20,468 research outputs found

    Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    Full text link
    We investigate a two-dimensional system of with two values of the internal (spin) degree of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field NN-body solutions as functions of the interaction parameters. Single-particle Spectra and total energies are computed and compared to the results without interaction. We perform a statistical analysis for the distributions of nearest neighbor energy level spacings and show that quantum signatures of chaos are seen in certain parameters regimes. Furthermore, the effects of two-body repulsion on the nearest neighbor distributions are investigated. This repulsion can either promote or destroy the signatures of potential chaotic behavior depending on relative strengths of parameters. Our findings support the suggestion that cold atoms may be used to study quantum chaos both in the presence and absence of interactions.Comment: 12 pages, 9 figures, revised versio

    The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy

    Full text link
    We have carried out spectroscopic observations in 4 cluster fields using Subaru's FOCAS multi-slit spectrograph and obtained spectra for 103 bright disk field and cluster galaxies at 0.06≤z≤1.200.06 \le z \le 1.20. Seventy-seven of these show emission lines, and 33 provide reasonably-secure determinations of the galaxies' rotation velocity. The rotation velocities, luminosities, colours and emission-line properties of these galaxies are used to study the possible effects of the cluster environment on the star-formation history of the galaxies. Comparing the Tully-Fisher relations of cluster and field galaxies at similar reshifts we find no measurable difference in rest-frame BB-band luminosity at a given rotation velocity (the formal difference is 0.18±0.330.18\pm0.33 mag). The colours of the cluster emission line galaxies are only marginally redder in rest-frame B−VB-V (by 0.06±0.040.06\pm0.04 mag) than the field galaxies in our sample. Taken at face value, these results seem to indicate that bright star-forming cluster spirals are similar to their field counterparts in their star-formation properties. However, we find that the fraction of disk galaxies with absorption-line spectra (i.e., with no current star formation) is larger in clusters than in the field by a factor of ∼3\sim3--5. This suggests that the cluster environment has the overall effect of switching off star formation in (at least) some spiral galaxies. To interpret these observational results, we carry out simulations of the possible effects of the cluster environment on the star-formation history of disk galaxies and thus their photometric and spectroscopic properties. Finally, we evaluate the evolution of the rest-frame absolute BB-band magnitude per unit redshift at fixed rotation velocity.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    Fish schooling as a basis for vertical axis wind turbine farm design

    Get PDF
    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16x16 wind turbines. Results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note: The technology described in this paper is protected under both US and international pending patents filed by the California Institute of Technolog

    Structure and decay at rapid proton capture waiting points

    Full text link
    We investigate the region of the nuclear chart around A≃70A \simeq 70 from a three-body perspective, where we compute reaction rates for the radiative capture of two protons. One key quantity is here the photon dissociation cross section for the inverse process where two protons are liberated from the borromean nucleus by photon bombardment. We find a number of peaks at low photon energy in this cross section where each peak is located at the energy corresponding to population of a three-body resonance. Thus, for these energies the decay or capture processes proceed through these resonances. However, the next step in the dissociation process still has the option of following several paths, that is either sequential decay by emission of one proton at a time with an intermediate two-body resonance as stepping stone, or direct decay into the continuum of both protons simultaneously. The astrophysical reaction rate is obtained by folding of the cross section as function of energy with the occupation probability for a Maxwell-Boltzmann temperature distribution. The reaction rate is then a function of temperature, and of course depending on the underlying three-body bound state and resonance structures. We show that a very simple formula at low temperature reproduces the elaborate numerically computed reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe

    Emergence of clusters: Halos, Efimov states, and experimental signals

    Get PDF
    We investigate emergence of halos and Efimov states in nuclei by use of a newly designed model which combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes 72^{72}Ca (70^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo-configurations emerge from the mean-field structure for three-body binding energy less than ∼100\sim 100keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta-decay.Comment: 5 pages, 5 figures, under revie

    A combined mean-field and three-body model tested on the 26^{26}O-nucleus

    Full text link
    We combine few- and many-body degrees of freedom in a model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core-nucleus surrounded by two valence nucleons. We treat the core in the mean-field approximation and use the same effective Skyrme interaction between both core and valence nucleons. We apply the model to 26^{26}O where we reproduce the known experimental data as well as phenomenological models with more parameters. The decay of the ground state is found to proceed directly into the continuum without effect of the virtual sequential decay through the well reproduced d3/2d_{3/2}-resonance of 25^{25}O.Comment: 5 pages, 5 figures, under revie

    Combining few-body cluster structures with many-body mean-field methods

    Full text link
    Nuclear cluster physics implicitly assumes a distinction between groups of degrees-of-freedom, that is the (frozen) intrinsic and (explicitly treated) relative cluster motion. We formulate a realistic and practical method to describe the coupled motion of these two sets of degrees-of-freedom. We derive a coupled set of differential equations for the system using the phenomenologically adjusted effective in-medium Skyrme type of nucleon-nucleon interaction. We select a two-nucleon plus core system where the mean-field approximation corresponding to the Skyrme interaction is used for the core. A hyperspherical adiabatic expansion of the Faddeev equations is used for the relative cluster motion. We shall specifically compare both the structure and the decay mechanism found from the traditional three-body calculations with the result using the new boundary condition provided by the full microscopic structure at small distance. The extended Hilbert space guaranties an improved wave function compared to both mean-field and three-body solutions. We shall investigate the structures and decay mechanism of 22^{22}C (20^{20}C+n+n). In conclusion, we have developed a method combining nuclear few- and many-body techniques without losing the descriptive power of each approximation at medium-to-large distances and small distances respectively. The coupled set of equations are solved self-consistently, and both structure and dynamic evolution are studied.Comment: 4 pages, 3 figures, conference proceedings, publishe
    • …
    corecore