1,190 research outputs found

    Developmental seizures induced by common early-life insults: short- and long-term effects on seizure susceptibility.

    Get PDF
    The immature brain is highly susceptible to seizures induced by a variety of insults, including hypoxia, fever, and trauma. Unlike early life epilepsy associated with congenital dysplasias or genetic abnormalities, insults induce a hyperexcitable state in a previously normal brain. Here we evaluate the epileptogenic effects of seizure-inducing stimuli on the developing brain, and the age and regional specificity of these effects

    An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems

    Get PDF
    Self-organisation lies at the core of fundamental but still unresolved scientific questions, and holds the promise of de-centralised paradigms crucial for future technological developments. While self-organising processes have been traditionally explained by the tendency of dynamical systems to evolve towards specific configurations, or attractors, we see self-organisation as a consequence of the interdependencies that those attractors induce. Building on this intuition, in this work we develop a theoretical framework for understanding and quantifying self-organisation based on coupled dynamical systems and multivariate information theory. We propose a metric of global structural strength that identifies when self-organisation appears, and a multi-layered decomposition that explains the emergent structure in terms of redundant and synergistic interdependencies. We illustrate our framework on elementary cellular automata, showing how it can detect and characterise the emergence of complex structures

    Greater than the parts: a review of the information decomposition approach to causal emergence.

    Get PDF
    Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'

    Psychedelics and schizophrenia: Distinct alterations to Bayesian inference

    Get PDF
    Schizophrenia and states induced by certain psychotomimetic drugs may share some physiological and phenomenological properties, but they differ in fundamental ways: one is a crippling chronic mental disease, while the others are temporary, pharmacologically-induced states presently being explored as treatments for mental illnesses. Building towards a deeper understanding of these different alterations of normal consciousness, here we compare the changes in neural dynamics induced by LSD and ketamine (in healthy volunteers) against those associated with schizophrenia, as observed in resting-state M/EEG recordings. While both conditions exhibit increased neural signal diversity, our findings reveal that this is accompanied by an increased transfer entropy from the front to the back of the brain in schizophrenia, versus an overall reduction under the two drugs. Furthermore, we show that these effects can be reproduced via different alterations of standard Bayesian inference applied on a computational model based on the predictive processing framework. In particular, the effects observed under the drugs are modelled as a reduction of the precision of the priors, while the effects of schizophrenia correspond to an increased precision of sensory information. These findings shed new light on the similarities and differences between schizophrenia and two psychotomimetic drug states, and have potential implications for the study of consciousness and future mental health treatments

    Effectiveness of interventions aimed at improving physical and psychological outcomes of fall-related injuries in people with dementia: a narrative systematic review

    Get PDF
    Background: The annual prevalence of falls in people with dementia ranges from 47 to 90%. Falls are a common reason for hospital admission in people with dementia, and there is limited research evidence regarding the care pathways experienced by this population. In addition to immediate management of an injury, prevention of further falls is likely to be an important part of any successful intervention. This review aims to assess the effectiveness of interventions for improving the physical and psychological wellbeing of people with dementia who have sustained a fall-related injury. Methods: Systematic review methodologies were employed utilising searches across multiple databases (MEDLINE, CENTRAL, Health Management Information Consortium, EMBASE, CINAHL, Web of Science, Allied and Complementary Medicine Database, and Physiotherapy Evidence Database (PEDro)) and citation chaining. Studies including people with a known diagnosis of dementia living in the community and who present at health services with a fall, with or without injury, were included. Outcomes of interest included mobility, recurrent falls, activities of daily living, length of hospital stay, and post-discharge residence. Results were independently reviewed and quality assessed by two researchers, and data extracted using a customised form. A narrative synthesis was performed due to heterogeneity of the included studies. Results: Seven studies were included. Interventions clustered into three broad categories: multidisciplinary in-hospital post-surgical geriatric assessment; pharmaceuticals; and multifactorial assessment. Multidisciplinary care and early mobilisation showed short-term improvements for some outcomes. Only an annual administration of zoledronic acid showed long-term reduction in recurrent falls. Conclusions: Due to high heterogeneity across the studies, definitive conclusions could not be reached. Most post-fall interventions were not aimed at patients with dementia and have shown little efficacy regardless of cognitive status. Minor improvements to some quality of life indicators were shown, but these were generally not statistically significant. Conclusions were also limited due to most studies addressing hip fracture; the interventions provided for this type of injury may not be suitable for other types of fractures or soft tissue injuries, or for use in primary care

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    Use of oral glucocorticoids and risk of skin cancer and non-Hodgkin's lymphoma: a population-based case–control study

    Get PDF
    In North Jutland County, Denmark, we investigated whether use of oral glucocorticoids was associated with an increased risk of developing basal cell carcinoma (BCC), squamous cell carcinoma (SCC), malignant melanoma (MM), and non-Hodgkin's lymphoma (NHL). From the Danish Cancer Registry we identified 5422 BCC, 935 SCC, 983 MM, and 481 NHL cases during 1989–2003. Using risk-set sampling we selected four age- and gender-matched population controls for each case from the Civil Registration System. Prescriptions for oral glucocorticoids before diagnosis were obtained from the Prescription Database of North Jutland County on the basis of National Health Service data. We used conditional logistic regression to estimate incidence rate ratios (IRRs), adjusting for chronic medical diseases (information about these were obtained from the National Patient Registry) and use of other immunosuppressants. We found slightly elevated risk estimates for BCC (IRR, 1.15 (95% CI: 1.07–1.25)), SCC (IRR, 1.14 (95% CI: 0.94–1.39)), MM (IRR, 1.15 (95% CI: 0.94–1.41), and NHL (IRR, 1.11 (95% CI: 0.85–1.46)) among users of oral glucocorticoids. Our study supports an overall association between glucocorticoid use and risk of BCC that cannot be explained by the presence of chronic diseases or concomitant use of other immunosuppressants

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    A multidisciplinary, multifactorial intervention program reduces postoperative falls and injuries after femoral neck fracture

    Get PDF
    INTRODUCTION: This study evaluates whether a postoperative multidisciplinary, intervention program, including systematic assessment and treatment of fall risk factors, active prevention, detection, and treatment of postoperative complications, could reduce inpatient falls and fall-related injuries after a femoral neck fracture. METHODS: A randomized, controlled trial at the orthopedic and geriatric departments at Umeå University Hospital, Sweden, included 199 patients with femoral neck fracture, aged  ≥70 years. RESULTS: Twelve patients fell 18 times in the intervention group compared with 26 patients suffering 60 falls in the control group. Only one patient with dementia fell in the intervention group compared with 11 in the control group. The crude postoperative fall incidence rate was 6.29/1,000 days in the intervention group vs 16.28/1,000 days in the control group. The incidence rate ratio was 0.38 [95% confidence interval (CI): 0.20 – 0.76, p = 0.006] for the total sample and 0.07 (95% CI: 0.01–0.57, p=0.013) among patients with dementia. There were no new fractures in the intervention group but four in the control group. CONCLUSION: A team applying comprehensive geriatric assessment and rehabilitation, including prevention, detection, and treatment of fall risk factors, can successfully prevent inpatient falls and injuries, even in patients with dementia
    corecore