1,156 research outputs found
Patterns of variability of retinol levels in a harbour porpoise population from an unpolluted environment
Organochlorine compounds (OC) are known to induce vitamin A (retinoids) deficiency in mammals, which may be associated with impairment of immunocompetence, reproduction and growth. This makes retinoids a potentially useful biomarker of organochlorine impact on marine mammals. However, use of retinoids as a biomarker requires knowledge about its intrapopulation patterns of variation in natural conditions, information which is not currently available. We investigated these patterns in a cetacean population living in an unpolluted environment. 100 harbour porpoises Phocoena phocoena from West Greenland were sampled during the 1995 hunting season. Sex, age, morphometrics, nutritive condition, and retinol (following saponification) and OC levels in blubber were determined for each individual. OC levels found were extremely low and therefore considered unlikely to affect the population adversely: mean blubber concentrations, expressed on an extractable basis, were 2.04 (SD = 1.1) ppm for PCBs and 2.76 (SD = 1.66) ppm for tDDT. The mean blubber retinol concentration for the overall population was 59.66 (SD = 45.26) mu g g(-1). Taking into account the high contribution of blubber to body mass, blubber constitutes a significant body site for retinoid deposition in harbour porpoises. Retinol concentrations did not differ significantly between geographical regions or sexes, but they did correlate significantly (p <0.001) with age. Body condition, measured by determining the lipid content of the blubber, did not have a significant effect on retinol levels but the individuals examined were considered to be in an overall good nutritive condition. It is concluded that measurement of retinol concentrations in blubber samples is feasible and has a potential for use as a biomarker of organochlorine exposure in cetaceans. However, in order to do so, biological information, particularly age, is critical for the correct assessment of physiological impac
Testing the SOC hypothesis for the magnetosphere
As noted by Chang, the hypothesis of Self-Organised Criticality provides a
theoretical framework in which the low dimensionality seen in magnetospheric
indices can be combined with the scaling seen in their power spectra and the
recently-observed plasma bursty bulk flows. As such, it has considerable
appeal, describing the aspects of the magnetospheric fuelling:storage:release
cycle which are generic to slowly-driven, interaction-dominated, thresholded
systems rather than unique to the magnetosphere. In consequence, several recent
numerical "sandpile" algorithms have been used with a view to comparison with
magnetospheric observables. However, demonstration of SOC in the magnetosphere
will require further work in the definition of a set of observable properties
which are the unique "fingerprint" of SOC. This is because, for example, a
scale-free power spectrum admits several possible explanations other than SOC.
A more subtle problem is important for both simulations and data analysis
when dealing with multiscale and hence broadband phenomena such as SOC. This is
that finite length systems such as the magnetosphere or magnetotail will by
definition give information over a small range of orders of magnitude, and so
scaling will tend to be narrowband. Here we develop a simple framework in which
previous descriptions of magnetospheric dynamics can be described and
contrasted. We then review existing observations which are indicative of SOC,
and ask if they are sufficient to demonstrate it unambiguously, and if not,
what new observations need to be made?Comment: 29 pages, 0 figures. Based on invited talk at Spring American
Geophysical Union Meeting, 1999. Journal of Atmospheric and Solar Terrestrial
Physics, in pres
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Static Observers in Curved Spaces and Non-inertial Frames in Minkowski Spacetime
Static observers in curved spacetimes may interpret their proper acceleration
as the opposite of a local gravitational field (in the Newtonian sense). Based
on this interpretation and motivated by the equivalence principle, we are led
to investigate congruences of timelike curves in Minkowski spacetime whose
acceleration field coincides with the acceleration field of static observers of
curved spaces. The congruences give rise to non-inertial frames that are
examined. Specifically we find, based on the locality principle, the embedding
of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit
form for arbitrary acceleration fields. We also determine, from the Einstein
equations, a covariant field equation that regulates the behavior of the proper
acceleration of static observers in curved spacetimes. It corresponds to an
exact relativistic version of the Newtonian gravitational field equation. In
the specific case in which the level surfaces of the norm of the acceleration
field of the static observers are maximally symmetric two-dimensional spaces,
the energy-momentum tensor of the source is analyzed.Comment: 28 pages, 4 figures
On the magnetic stability at the surface in strongly correlated electron systems
The stability of ferromagnetism at the surface at finite temperatures is
investigated within the strongly correlated Hubbard model on a semi-infinite
lattice. Due to the reduced surface coordination number the effective Coulomb
correlation is enhanced at the surface compared to the bulk. Therefore, within
the well-known Stoner-picture of band ferromagnetism one would expect the
magnetic stability at the surface to be enhanced as well. However, by taking
electron correlations into account well beyond the Hartree-Fock (Stoner) level
we find the opposite behavior: As a function of temperature the magnetization
of the surface layer decreases faster than in the bulk. By varying the hopping
integral within the surface layer this behavior becomes even more pronounced. A
reduced hopping integral at the surface tends to destabilize surface
ferromagnetism whereas the magnetic stability gets enhanced by an increased
hopping integral. This behavior represents a pure correlation effect and can be
understood in terms of general arguments which are based on exact results in
the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related
work and info see http://orion.physik.hu-berlin.d
Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential
We report on the results of molecular dynamics simulation (MD) studies of the
classical two-dimensional electron crystal in the presence disorder. Our study
is motivated by recent experiments on this system in modulation doped
semiconductor systems in very strong magnetic fields, where the magnetic length
is much smaller than the average interelectron spacing , as well as by
recent studies of electrons on the surface of helium. We investigate the low
temperature state of this system using a simulated annealing method. We find
that the low temperature state of the system always has isolated dislocations,
even at the weakest disorder levels investigated. We also find evidence for a
transition from a hexatic glass to an isotropic glass as the disorder is
increased. The former is characterized by quasi-long range orientational order,
and the absence of disclination defects in the low temperature state, and the
latter by short range orientational order and the presence of these defects.
The threshold electric field is also studied as a function of the disorder
strength, and is shown to have a characteristic signature of the transition.
Finally, the qualitative behavior of the electron flow in the depinned state is
shown to change continuously from an elastic flow to a channel-like, plastic
flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for
publication in Phys. Rev. B., HAF94MD
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Expression of CD45RC and Ia Antigen in the Spinal Cord in Acute Experimental Allergic Encephalomyelitis: An Immunocytochemical and Flow Cytometric Study
We performed immunocytochemical studies to analyze the inflammatory infiltrate and major histocompatibility complex class II (Ia) antigen expression in the spinal cord of Lewis rats with acute experimental allergic encephalomyelitis (EAE) induced by inoculation with myelin basic protein and adjuvants. Using antibodies to lymphocyte markers and other monoclonal antibodies we found that during clinical episodes the inflammatory infiltrate was chiefly composed of T lymphocytes and macrophages. The majority of cells in the inflammatory infiltrate were stained by the W3/25 antibody to CD4 and a proportion was stained by OX22 which labels the high molecular weight form of the leucocyte common antigen (CD45RC). CDB+ T cells were sparse and B cells were not detected. There was minimal staining with the OX39 antibody to the interleukin-2 receptor. Presumptive microglia, identified by their dendritic morphology, expressed Ia antigen during the clinical episodes and after recovery. The prominence of Ia antigen expression after recovery could indicate that this la expression was associated with downregulation of the encephalitogenic immune response. We also performed flow cytometry studies on cells extracted from the spinal cord of rats before and during attacks of EAE. With flow cytometry, we found that in established disease a mean of 83(SD, 23)% of CD2+ cells were CD4+, and a mean of 27(SD, 12)% of CD2+ cells were CD45RC+. In rats sampled on the first day of signs, a mean of 43(SD, 22)% of CD2+ cells were CD45RC+. In the cells extracted from the spinal cord of rats with established disease a mean of 47(SD, 32)% of macrophages were CD45RC+. Our study has combined an immunocytochemical assessment of tissue sections with quantitative flow cytometry assessment of cells extracted from the spinal cord of rats with acute EAE. We have shown that the majority of T lymphocytes in the spinal cord are CD45RC-. We have also found prominent Ia expression on dendritic cells in acute EAE and after clinical recovery
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
- …
