5,227 research outputs found

    Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    Get PDF
    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity impacts on retrieval algorithms, and to demonstrate airborne soil moisture retrieval capabilities, the University of Tennessee Space Institute Piper aircraft carrying the MAPIR L-band radiometer was also flown during the latter half of the experiment in coordination with the ER-2. The observational strategy provided a means to sample the atmospheric column in a redundant framework that enables inter-calibration and constraint of measured and retrieved precipitation characteristics such as particle size distributions, or water contents- all within the umbrella of "proxy" satellite measurements (i.e., the ER-2). Complimenting the precipitation sampling framework, frequent and coincident launches of atmospheric soundings (e.g., 4-8/day) then provided a much larger mesoscale view of the thermodynamic and winds environment, a data set useful for initializing cloud models. The datasets collected represent a variety cloud and precipitation types including isolated cumulus clouds, severe thunderstorms, mesoscale convective systems, and widespread regions of light to moderate stratiform precipitation. We will present the MC3E experiment design, an overview of operations, and a summary of preliminary results

    Neuronal avalanches recorded in the awake and sleeping monkey do not show a power law but can be reproduced by a self-organized critical model

    Get PDF
    Poster presentation: Self-organized critical (SOC) systems are complex dynamical systems that may express cascades of events, called avalanches [1]. The SOC state was proposed to govern brain function, because of its activity fluctuations over many orders of magnitude, its sensitivity to small input and its long term stability [2,3]. In addition, the critical state is optimal for information storage and processing [4]. Both hallmark features of SOC systems, a power law distribution f(s) for the avalanche size s and a branching parameter (bp) of unity, were found for neuronal avalanches recorded in vitro [5]. However, recordings in vivo yielded contradictory results [6]. Electrophysiological recordings in vivo only cover a small fraction of the brain, while criticality analysis assumes that the complete system is sampled. We hypothesized that spatial subsampling might influence the observed avalanche statistics. In addition, SOC models can have different connectivity, but always show a power law for f(s) and bp = 1 when fully sampled. This may not be the case under subsampling, however. Here, we wanted to know whether a state change from awake to asleep could be modeled by changing the connectivity of a SOC model without leaving the critical state. We simulated a SOC model [1] and calculated f(s) and bp obtained from sampling only the activity of a set of 4 × 4 sites, representing the electrode positions in the cortex. We compared these results with results obtained from multielectrode recordings of local field potentials (LFP) in the cortex of behaving monkeys. We calculated f(s) and bp for the LFP activity recorded while the monkey was either awake or asleep and compared these results to results obtained from two subsampled SOC model with different connectivity. f(s) and bp were very similar for both the experiments and the subsampled SOC model, but in contrast to the fully sampled model, f(s) did not show a power law and bp was smaller than unity. With increasing the distance between the sampling sites, f(s) changed from "apparently supercritical" to "apparently subcritical" distributions in both the model and the LFP data. f(s) and bp calculated from LFP recorded during awake and asleep differed. These changes could be explained by altering the connectivity in the SOC model. Our results show that subsampling can prevent the observation of the characteristic power law and bp in SOC systems, and misclassifications of critical systems as sub- or supercritical are possible. In addition, a change in f(s) and bp for different states (awake/asleep) does not necessarily imply a change from criticality to sub- or supercriticality, but can also be explained by a change in the effective connectivity of the network without leaving the critical state

    The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury

    Get PDF
    PURPOSE: Hydrogen sulfide (H2S) has many beneficial properties and may serve as a novel treatment in patients suffering from intestinal ischemia-reperfusion injury (I/R). The purpose of this study was to examine the method of delivery and timing of administration of H2S for intestinal therapy during ischemic injury. We hypothesized that 1) route of administration of hydrogen sulfide would impact intestinal recovery following acute mesenteric ischemia and 2) preischemic H2S conditioning using the optimal mode of administration as determined above would provide superior protection compared to postischemic application. METHODS: Male C57BL/6J mice underwent intestinal ischemia by temporary occlusion of the superior mesenteric artery. Following ischemia, animals were treated according to one of the following (N=6 per group): intraperitoneal or intravenous injection of GYY4137 (H2S-releasing donor, 50mg/kg in PBS), vehicle, inhalation of oxygen only, inhalation of 80ppm hydrogen sulfide gas. Following 24-h recovery, perfusion was assessed via laser Doppler imaging, and animals were euthanized. Perfusion and histology data were assessed, and terminal ileum samples were analyzed for cytokine production following ischemia. Once the optimal route of administration was determined, preischemic conditioning with H2S was undertaken using that route of administration. All data were analyzed using Mann-Whitney. P-values <0.05 were significant. RESULTS: Mesenteric perfusion following intestinal I/R was superior in mice treated with intraperitoneal (IP) GYY4137 (IP vehicle: 25.6±6.0 vs. IP GYY4137: 79.7±15.1; p=0.02) or intravenous (IV) GYY4137 (IV vehicle: 36.3±5.9 vs. IV GYY4137: 100.7±34.0; p=0.03). This benefit was not observed with inhaled H2S gas (O2 vehicle: 66.6±11.4 vs. H2S gas: 81.8±6.0; p=0.31). However, histological architecture was only preserved with intraperitoneal administration of GYY4127 (IP vehicle: 3.4±0.4 vs. IP GYY4137: 2±0.3; p=0.02). Additionally, IP GYY4137 allowed for significant attenuation of inflammatory chemokine production of IL-6, IP-10 and MIP-2. We then analyzed whether there was a difference between pre- and postischemic administration of IP GYY4137. We found that preconditioning of animals with intraperitoneal GYY4137 only added minor improvements in outcomes compared to postischemic application. CONCLUSION: Therapeutic benefits of H2S are superior with intraperitoneal application of an H2S donor compared to other administration routes. Additionally, while intraperitoneal treatment in both the pre- and postischemic period is beneficial, preischemic application of an H2S donor was found to be slightly better. Further studies are needed to examine long term outcomes and further mechanisms of action prior to widespread clinical application. TYPE OF STUDY: Basic science. LEVEL OF EVIDENCE: N/A

    Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    Get PDF
    The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis

    Scattering by single physically large and weak scatterers in the beam of a single-element transducer

    Get PDF
    Quantitative ultrasound techniques are generally applied to characterize media whose scattering sites are considered to be small compared to a wavelength. In this study, the backscattered response of single weakly scattering spheres and cylinders with diameters comparable to the beam width of a 2.25 MHz single-element transducer were simulated and measured in the transducer focal plane to investigate the impact of physically large scatterers. The responses from large single spherical scatterers at the focus were found to closely match the plane-wave response. The responses from large cylindrical scatterers at the focus were found to differ from the plane-wave response by a factor of f(−1). Normalized spectra from simulations and measurements were in close agreement: the fall-off of the responses as a function of lateral position agreed to within 2 dB for spherical scatterers and to within 3.5 dB for cylindrical scatterers. In both measurement and simulation, single scatterer diameter estimates were biased by less than 3% for a more highly focused transducer compared to estimates for a more weakly focused transducer. The results suggest that quantitative ultrasound techniques may produce physically meaningful size estimates for media whose response is dominated by scatterers comparable in size to the transducer beam

    The effect of aging on cervical parameters in a normative North American population

    Get PDF
    Study Design: Retrospective cohort study. Objectives: To investigate age-based changes in cervical alignment parameters in an asymptomatic population. Methods: Retrospective review of a prospective study of 118 asymptomatic subjects who underwent biplanar imaging with 3-dimensional capabilities. Demographic and health-related quality of life data was collected prior to imaging. Patients were stratified into 5 age groups: &lt;35 years, 35-44 years, 45-54 years, 55-64 years, and ≄65 years. Radiographic measurements of the cervical spine and spinopelvic parameters were compared between age groups. The normal distribution of parameters was assessed followed by analysis of variance for comparison of variance between age groups. Results: C2-C7 lordosis, C0-C7 lordosis, and T1 slope demonstrated significant increases with age. C0-C7 lordosis was significantly less in subjects &lt;35 years compared with ≄55 years. Significant differences in T1 slope were identified in patients &lt;35 versus ≄65, 35-44 versus ≄65, and 45-54 versus ≄65 years. T1 slope demonstrated a positive correlation with age. Horizontal gaze parameters did not change linearly with age and mean averages of all age groups were within 10° of one another. Cervical kyphosis was present in approximately half of subjects who were &lt;55 compared with approximately 10% of subjects ≄55 years. Differences in pelvic tilt, pelvic incidence-lumbar lordosis, and C7-S1 sagittal vertical axis were identified with age. Conclusions: C0-C7 lordosis, C2-C7 lordosis, and T1 slope demonstrate age-based changes while other cervical and horizontal gaze parameters remain relatively constant with age. </jats:sec

    Does polyandry really pay off? The effects ofmultiple mating and number of fathers on morphological traits and survival in clutches of nesting green turtles at Tortuguero

    Get PDF
    Despite the long debate of whether or not multiple mating benefits the offspring, studies still show contradictory results. Multiple mating takes time and energy. Thus, if females fertilize their eggs with a single mating, why to mate more than once? We investigated and inferred paternal identity and number of sires in 12 clutches (240 hatchlings) of green turtles (Chelonia mydas) nests at Tortuguero, Costa Rica. Paternal alleles were inferred through comparison of maternal and hatchling genotypes, and indicated multiple paternity in at least 11 of the clutches (92%). The inferred average number of fathers was three (ranging from 1 to 5). Moreover, regression analyses were used to investigate for correlation of inferred clutch paternity with morphological traits of hatchlings fitness (emergence success, length, weight and crawling speed), the size of the mother, and an environmental variable (incubation temperature). We suggest and propose two different comparative approaches for evaluating morphological traits and clutch paternity, in order to infer greater offspring survival. First, clutches coded by the exact number of fathers and second by the exact paternal contribution (fathers who gives greater proportion of the offspring per nest). We found significant differences (P < 0.05) in clutches coded by the exact number of fathers for all morphological traits. A general tendency of higher values in offspring sired by two to three fathers was observed for the length and weight traits. However, emergence success and crawling speed showed different trends which unable us to reach any further conclusion. The second approach analysing the paternal contribution showed no significant difference (P > 0.05) for any of the traits. We conclude that multiple paternity does not provide any extra benefit in the morphological fitness traits or the survival of the offspring, when analysed following the proposed comparative statistical methods
    • 

    corecore