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Quantitative ultrasound techniques are generally applied to characterize media whose scattering

sites are considered to be small compared to a wavelength. In this study, the backscattered response

of single weakly scattering spheres and cylinders with diameters comparable to the beam width of a

2.25 MHz single-element transducer were simulated and measured in the transducer focal plane to

investigate the impact of physically large scatterers. The responses from large single spherical scat-

terers at the focus were found to closely match the plane-wave response. The responses from large

cylindrical scatterers at the focus were found to differ from the plane-wave response by a factor of

f�1. Normalized spectra from simulations and measurements were in close agreement: the fall-off

of the responses as a function of lateral position agreed to within 2 dB for spherical scatterers and

to within 3.5 dB for cylindrical scatterers. In both measurement and simulation, single scatterer di-

ameter estimates were biased by less than 3% for a more highly focused transducer compared to

estimates for a more weakly focused transducer. The results suggest that quantitative ultrasound

techniques may produce physically meaningful size estimates for media whose response is domi-

nated by scatterers comparable in size to the transducer beam.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4913781]
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I. INTRODUCTION

Quantitative imaging techniques are being developed to

improve the specificity of diagnostic imaging1,2 by quantify-

ing tissue properties based on the ultrasonic backscattered

signal. Several of these techniques use models of scattering

for characterization of tissue disease or response to ther-

apy.3–11 The choice of scattering models is influenced by

certain a priori assumptions about the sources of scattering

in tissues, such as the assumptions of weak scattering and

scattering sites that are physically small compared to a wave-

length and, consequently, small compared to the transducer

beam width for a weakly focused transducer. This later

assumption allows the spatial autocorrelation function of a

random medium to be decoupled from the transducer beam.

Since the candidate scattering sites in tissue such as blood

vessels or regions of necrosis do not necessarily satisfy this

assumption, models incorporating physically large scatterers

may produce improved contrast and better signal interpreta-

tion for tissues in which large scatterers are present.

The modeling of ultrasonic scattering typically assumes

plane-wave insonification and follows two approaches: (1)

calculating the field scattered from a discrete object with a

simple geometry imbedded in a homogeneous background

or (2) calculating the scattered field from a random weakly

scattering inhomogeneous medium. The first approach

utilizes a homogeneous wave equation and boundary condi-

tions at the scatterer surface to predict the scattered field.

Using this method, Anderson12 provided solutions for scat-

tering from isolated fluid spheres when insonified by a plane

wave. Faran expanded this work to incorporate shear waves

in scattering from isolated spheres and isolated cylinders.13

The strength of the first approach is that exact solutions to

scattering can be calculated. However, the first approach is

also limited in that analytical expressions only exist for sim-

ple geometrical shapes such as spheres and cylinders.

In the second approach, the inhomogeneous wave equa-

tion is used to predict scattered fields. To arrive at a solution

for the scattered field, the Born approximation has been

widely used,14–16 where total field at the scatterer location

(made up of the incident field plus the scattered field) is

replaced by the incident field. This assumption has been jus-

tified in soft tissues because of the small impedance mis-

match between tissue components. Using a Green’s function

approach and the Born approximation, the scattered field for

plane-wave incidence can then be predicted on the basis of

intensity form factors.17,18 In acoustics, the intensity form

factor relates the spatial distribution of the characteristic im-

pedance to the frequency-dependent response of the scat-

tered field. Analytical solutions exist for collections of

simple shapes but also can be calculated for scatterers with

more complex impedance structure.17,19

Several approaches can be found in the literature to pre-

dict the backscattered response from media with complex

structure. Manry et al.20 studied ultrasound propagation in a
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two-dimensional (2D) model of the breast using the finite

difference time domain approach and a line source located

outside the scattering region. Mast et al.21 studied a 2D

model of ultrasound propagation of plane waves through the

abdominal wall using a finite difference method. Doyle

et al.22 proposed a three-dimensional (3D) modeling

approach to include the effects of multiple scattering and

shear waves using an iterative multipole approach. Mamou

et al.23,24 proposed a 3D impedance map approach to predict

the plane-wave response from 3D computational phantoms

constructed from aligned microscope slides. These

approaches do not include transducer beam diffraction

effects and are limited to either a 2D implementation or

small spatial regions with respect to wavelength. Several

works have also examined the effects of the beam shape

when considering scattering.25–33 These approaches require

the use of simple beam models or simple geometric shapes

for the scattering object.

An approach which incorporates diffraction effects for

an arbitrary transducer as well as the capability to predict the

response from complex media was described by Jensen

et al.34 and later expanded by Mari et al.35 and Zemp et al.36

In this approach, weak scattering conditions were invoked

using the Born approximation, and the scattered field was

expressed in terms of the convolution of several terms; the

spatial impulse response of the transducer, the impulse

response of the source, and a function of the spatially vary-

ing scattering coefficient. Although the method is well suited

to computational approaches, no implementation details with

respect to direct simulation of 3D structures are provided in

the reference works.37,38 One recent extension of the Mari

approach developed simulations to generate ultrasound

images from histology-based maps of bulk modulus.39

However, the method used single histology slices and was

inherently a 2D approach, reinforcing the need for further

work that models diffraction and scattering in 3D space.

In this manuscript, the transducer responses for single

spheres and cylinders, which are comparable in diameter to a

wavelength and the transducer beam width, are predicted

and compared to the known plane-wave response for these

geometries under weak scattering conditions. Predictions are

generated in simulation through a novel implementation of

the method of Jensen34 and corroborated with measurement

scans of spherical (fish eggs in agar) and cylindrical (water

cylinders in agar) weak scatterers. Since most techniques to

model scattering in weakly scattering random media such as

tissue assume that scatterers in the field are much smaller

than the wavelength, the simulations and experiments are

used to evaluate this assumption.

II. THEORY

A. Simulation method formulation

The basis of our simulation method is an acoustical

imaging method derived in the work of Jensen.34 We assume

negligible attenuation and particle velocities small enough

that non-linear propagation can be neglected. Scattering is

considered to arise from spatially continuous fluctuations in

speed of sound and density. These fluctuations are assumed

to be small enough that only the incident longitudinal wave

is scattered (Born approximation) and the propagation of

both the incident and scattered waves is at a constant sound

speed c0. A fluid medium without shear waves is also

assumed. These assumptions are common in the analysis of

scattering from soft tissue, although attenuation in the fre-

quency domain is needed to yield realistic signals for such

media.

Using the approximations stated above, the voltage vðtÞ
received by a transducer at time t can be expressed as a con-

volution between the pulse-echo wavelet vpeðtÞ, the trans-

ducer pulse-echo spatial impulse response hpeðr; tÞ [together

forming an imaging response qðtjrÞ] (Ref. 25) and a scatter-

ing coefficient function sðrÞ:

v tð Þ ¼ @2

@t2
q tjrð Þ�r s rð Þ
� �

; (1)

qðtjrÞ ¼ vpeðtÞ�t hpeðr; tÞ; (2)

where r ¼ ðx; y; zÞ are spatial coordinates. Likewise,

vpe tð Þ ¼ q0

4c2
0

Em tð Þ�t
@u tð Þ
@t

; (3)

hpeðr; tÞ ¼ hðr; tÞ�t hðr; tÞ; (4)

s rð Þ ¼ Z rð Þ � Z0

Z0

; (5)

where ZðrÞ is a function of the scatterer density and sound

speed, Z0 is a function of the background density and sound

speed q0 and c0.

The scattering from any object or group of objects can

be simulated by correctly assigning the scattering coefficient

sðrÞ and performing the convolution in Eq. (1). Assuming an

ideal pulse such that qðtjrÞ ¼ hpeðr; tÞ, the expression for the

received voltage in integral form becomes a weighted inte-

gral of the spatial impulse response

v tð Þ ¼ @2

@t2

ð
r2V

s rð Þhpe r; tð Þdr; (6)

where V denotes a volume of interest outside of which the

scattering function sðrÞ is zero.

It should be noted that a double temporal derivative

appears in Eq. (1). Differentiation in the time domain causes

a multiplication by j2pf in the Fourier domain; therefore, the

effect of this double derivative is to cause an f 2 dependence

in backscattered pressure (and hence f 4 dependence in back-

scattered intensity). This dependence can be implicitly

removed by defining a normalized received voltage as

v0ðtÞ ¼
ð

r2V

sðrÞhpeðr; tÞdr: (7)

In the current work, we define a frequency-domain nor-

malized frequency response for comparison with plane-wave

theory (intensity form factors) for weak scatterers. For

spheres, this amounts to excluding this f 4 frequency
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dependence from the received voltage. For cylinders, an f 3

dependence is removed, corresponding to the plane-wave

small scattering frequency dependence for cylinders. The

normalized frequency responses for spheres (Ns) and for cyl-

inders (Nc), assuming an ideal pulse, are then

Nsðf Þ ¼ jV0ðf Þj2 ¼
ð1
�1

v0ðtÞ expð�2jpftÞdt

����
����
2

; (8)

Ncðf Þ ¼ jV0ðf Þj2f ¼
ð1
�1

v0ðtÞ expð�2jpftÞdt

����
����
2

f : (9)

These responses can be directly compared to the form

factor for a fluid sphere (Fs) or a fluid cylinder (Fcyl):

Fs kað Þ ¼ 3j1 2kað Þ
2ka

� �2

; (10)

Fcyl kað Þ ¼ 2
J1 2kað Þ

2ka

� �2

: (11)

III. METHODS

A. Simulation methods

Simulated ultrasound scans were generated using the

Field II software package37,38 in MATLAB (R2013a, The

Mathworks, Natick, MA). Field II computes a discrete time-

domain spatial impulse response for a specified transducer

geometry. This response corresponds to the term hpeðr; tÞ in

Eq. (2), and represents the response of a point scatterer at a

particular location in the transducer beam. The integral term

in Eq. (7) was approximated by a sum, whereby the values

of hpeðr; tÞ and normalized bulk modulus s were evaluated

on a spatial grid:

vN½n� ¼ Dx3
X

i

si � hpe½n
*

i; n�; (12)

n
*

i are the set of grid points, Dx is the grid spacing, si is the

scattering coefficient at grid point i, and the discrete time

signal is indexed by n. Simulation transducer properties

appear in Table I. Simulation and measurements transducers

had the same nominal properties. More sophisticated

approaches, such as quadrature, were eschewed in favor of

this simple approach.

The simulated normalized frequency response was com-

puted for spheres and cylinders as the power spectrum of

vN ½n� using the fast Fourier transform (FFT) algorithm in

MATLAB. Simulation sampling frequency and transducer

patch size (Table I) were chosen based on recommendations

in the reference papers.37,38 Transducer diameters and focus

lengths were chosen to agree with nominal values for mea-

surement transducers (Table II). Grid size was determined

by comparing the responses for progressively decreasing

grid sizes for several sphere diameters (Fig. 1). The grid size

was established for each diameter based on convergence

over a specified bandwidth [root-mean-square error

(RMSE)< 2.5 dB, 0–5 MHz]. Table III shows the grid size

for each sphere diameter. Based on these findings, a grid size

of 25 lm was chosen for simulating the fish eggs that were

500 lm in size. An identical analysis appears in Table IV for

cylinders (Fig. 2).

B. Phantom preparation and scanning

Capelin fish eggs (Fig. 3) were purchased frozen from a

grocery store and used as an acoustic model for a sphere.

These eggs were roughly spherical and measured approxi-

mately 1 mm in diameter. During phantom construction, the

eggs were thawed on the low setting in a microwave for

approximately 20 s. Next, 2.25 g of noble agar powder

(Sigma-Aldrich, St. Louis, MO) was added to 100 ml of

degassed water and mixed with a magnetic stirrer. Once dis-

solved, the mixture was placed in the microwave and heated

to 90 �C, stirring occasionally. The heated agar solution

cooled while mixing with the magnetic stirrer. Once the agar

cooled to 45 �C it was placed in one of several plastic cylin-

drical wells containing individual eggs using a pipette. Each

egg was then positioned near the center of the well using the

pipette while the agar was still fluid. Once the agar con-

gealed slightly the well container was placed in a refrigerator

for at least four hours prior to scanning.

Each fish egg phantom was individually placed in room

temperature degassed water for scanning. The reflection from

the egg was located and placed in the focal plane of the trans-

ducer (Fig. 4), and a 2D lateral scan was conducted to find

the maximum position, as well as record the response at vari-

ous lateral offsets from the focus. This scanning procedure

was repeated for two transducers (Table II) for each fish egg.

Fluid cylinders were constructed by pouring liquid agar

into a container with a single plastic cylinder oriented paral-

lel to the top surface of the phantom. The agar was produced

TABLE I. Simulation transducer properties.

Transducer

Diameter

(cm)

Focal depth

(cm)

Patch size

(mm)

Center frequency

(MHz)

Sampling frequency

(MHz)

Grid size

(lm) (unless specified)

1 1.91 2.54 1 2.25 200 25

2 1.91 5.72 1 2.25 200 25

TABLE II. Measurement transducer properties.

Transducer

Center frequency

(MHz)

Diameter

(cm)

Focal depth

(cm)

Beam width

(�12 dB, mm)

1 2.25 1.91 2.54 0.80

2 2.25 1.91 5.72 1.80
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in the same manner described for the fish egg phantoms, and

allowed to cool and harden in the refrigerator for several

hours. The plastic cylinder was then carefully removed, and

the agar phantom was placed into a degassed water bath for

measurement. The bath water was allowed to fill the cylin-

drical cavity, producing a fluid cylindrical scatterer in an

agar background. A one-dimensional lateral scan was con-

ducted perpendicular to the length of the cylinder.

Transducer scans were conducted using a Panametrics

5800 pulser-receiver (Olympus NDT, Waltham, MA) con-

nected to a UF3 A/D card (Strategic Test, Boston, MA) with

250 MHz sampling. The data were displayed and acquired

using custom LabVIEW (National Instruments, Austin, TX)

software running on a PC. Reference scans were taken

throughout the transducer depth of field using a flat reflector

plate with a known reflection coefficient in water.

C. Estimation of the normalized frequency response

The measured normalized frequency response from each

fish egg was estimated from the power spectrum of the time-

domain gated response (see Fig. 4 for the time domain

response). From this power spectrum, the frequency depend-

ence of the transducer pulse was removed using a planar

reflector reference measurement. This normalized frequency

response was then compared to simulation using an ideal

pulse. The normalized frequency responses for spheres and

cylinders, respectively, were computed as

NS fð Þ ¼ 10 log10

jV fð Þj2

jVref fð Þj2
� f�6

 !
; (13)

NC fð Þ ¼ 10 log10

jV fð Þj2

jVref fð Þj2
� f�5

 !
; (14)

where Vðf Þ is the Fourier transform of the measured voltage

computed using the FFT algorithm, Vrefðf Þ is the Fourier

transform of the reference scan measured voltage. Insana

et al. showed that the “normalized power spectrum” result-

ing from dividing sample and planar reference power spectra

results in an f6 dependence.17 We removed this dependence

for direct comparison with intensity form factors.

IV. RESULTS

Two different scattering configurations were simulated

and compared to experimental measurements for both spher-

ical and cylindrical scatterers. In the first configuration, sim-

ulations and measurements of physically large single

FIG. 1. (Color online) Simulated nor-

malized frequency responses for

spheres of three different radii. Each

sphere was simulated using transducer

2 at four different grid sizes (dx).

TABLE III. Simulation grid size for several sphere radii (transducer 2).

Sphere radius (lm) Fraction of radius Grid size (lm)

5 1/5 1

25 1/5 5

100 1/5 20

250 1/10 25

500 1/20 25

750 1/20 37.5

TABLE IV. Simulation grid size for several cylinder radii (transducer 2).

Cylinder radius (lm) Fraction of radius Grid size (lm)

50 1/5 10

100 1/5 20

500 1/20 25

1500 1/25 60
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scatterers located at several positions throughout the focal

plane were compared to ensure that the simulations captured

realistic beam effects. In the second configuration, a single

scatterer was simulated or measured at the focus of two

transducers having different beam dimensions. The

responses for the two transducers were compared to the

plane-wave response to investigate the impact of the trans-

ducer beam, and a scatterer size was estimated in each case.

The investigations conducted were (A) simulation of spheres

and spheroids and comparison of their responses, (B) simula-

tions of physically large (diameter approximately equal to a

wavelength) spherical scatterers compared to the measured

response for fish eggs and to intensity form factors, (C) sim-

ulations of thin cylinders in the focal plane of a transducer

compared to intensity form factors, and (D) simulations of

physically large (diameter approximately equal to a wave-

length) cylindrical scatterers compared to the measured

response for a fluid cylinder and to intensity form factors.

A. Comparison of the predicted response for spheres
and spheroids

Fish eggs were used to model a weakly scattering spher-

ical target, but were slightly spheroidal in shape. The impact

of the fish egg shape was first studied in simulation. Figure 5

shows the simulated responses for a spheroid with a single

long axis oriented in both axial and lateral directions with

respect to the transducer. The responses agreed closely with

the response for a sphere with a diameter equal to the axial

support of the spheroid (RMSE between spheroid and corre-

sponding sphere was 0.66 and 0.98 dB, respectively, for

1000 and 800 lm diameter spheres). Thus, the simulated

response for a single spheroid with similar dimensions to the

fish eggs matches the simulated response for a properly cho-

sen sphere. This finding suggests that, though they are sphe-

roidal, the single fish eggs are a good acoustic model for a

single sphere.

B. Comparison of measurement, simulation,
and theory for a physically large spherical scatterer

The normalized frequency response was estimated

[Eq. (13)] from radio frequency (RF) data measured from

three fish eggs at the focus of transducer 2. The fish eggs

were slightly spheroidal, and two of the three dimensions of

each fish egg were estimated from optical microscope

images. The dimensions estimated from the optical micro-

scope are listed in Table V. For each fish egg, a normalized

frequency response was generated from a simulated sphere

for comparison. Figure 6 depicts the response from three fish

FIG. 2. (Color online) Orientation (a)

and lateral grid arrangement (b) for

single simulated cylinders. All cylin-

ders were oriented such that their axis

was perpendicular to the transducer

beam axis (arrow).

FIG. 3. (Color online) Microscope image of a Capelin fish egg

(4�magnification). Scale bar indicates 500 lm.

FIG. 4. (Color online) Received voltage for a single fish egg in a cylindrical

agar phantom. Reflections are (from left to right): water/agar interface, fish

egg, and agar/reflector interface. Focus of the transducer is centered on the

fish egg reflection.
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eggs and three best-fit simulated spheres each located at

three lateral positions with respect to the focus (0, 500, and

1000 lm from the focus). The simulation spheres sizes were

chosen to give the best alignment of the nulls of the response

as determined by visual assessment. The response for each

fish egg is normalized by a single constant chosen to normal-

ize the 0 lm response to 0 dB at 3 MHz [3.25 MHz for

Fig. 6(b)]. The decrease of the response as a function of

sphere lateral position at the peak frequency is quantified in

Table VI, where the differences between the 0 lm position

response and the 500 and 1000 lm positions are computed at

the last peak in the bandwidth. Simulation and experiment

were in agreement to within 1 dB for two of the three fish

eggs (Fig. 6).

To examine the impact of increasing sphere size com-

pared to the width of the beam, a comparison was conducted

by simulating the response for a single 1000 lm diameter

scatterer for two transducers with the same diameter and cen-

ter frequency but different focal lengths and hence beam

widths (Table I). The beam widths of transducer 1 and trans-

ducer 2 were approximately 875 and 2000 lm at 2.25 MHz,

respectively, compared to a scatterer diameter of 1000 lm.

Simulated responses for both transducers appear in Fig. 7(b).

The response for transducer 2 corresponded to a best-fit inten-

sity form factor for a 498 lm radius sphere (RMSE¼ 2.46 dB,

2–3 MHz), while the best-fit intensity form factor to the

response for transducer 1 corresponded to a sphere radius of

490 lm (RMSE¼ 2.46 dB, 2–3 MHz). These estimates corre-

spond to a 0.4% and 2.0% difference with the true scatterer

size, respectively, and to a 1.6% difference between each

other.

To corroborate the simulation findings, a single fish egg

was scanned consecutively with transducers 1 and 2. The

measured responses at the focus appear in Fig. 7(a). The

measured response for transducer 1 was shifted slightly

FIG. 5. (Color online) Simulations of a spheroid in two orientations with

respect to the transducer beam compared to simulations of spheres with di-

ameter equal to the axial extent of the spheroid for each orientation.

TABLE V. Fish egg diameter estimates from optical microscopy and best-

fit diameters for simulation comparison with the experimental data.

Fig. 7 subplot Axis 1 (lm) Axis 2 (lm) Best-fit (lm)

a 818 1020 710

b 1260 1230 1330

c 1200 1050 950

FIG. 6. (Color online) Simulated

(solid) and measured (marker) normal-

ized frequency responses for three fish

eggs at three lateral positions.
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toward the response for a smaller scatterer compared to the

corresponding response for transducer 2. The best-fit form

factors for the measured responses were 465 lm

(RMSE¼ 3.2 dB, 2–3 MHz) for transducer 1 and 470 lm

(RMSE¼ 2.0 dB, 2–3 MHz) for transducer 2, corresponding

to a 1.1% difference. Thus, the measured and simulated

responses for transducer 1 were both shifted slightly toward

the plane-wave response for a 1%–2% smaller scatterer com-

pared to the response for transducer 2.

C. Simulation of a thin cylinder in the focal plane

A thin cylinder (ka� 1, 0–5 MHz) was simulated using

as a single spatial sample in cross section and several sam-

ples along the cylinder length, which was parallel to the

beam lateral direction (Fig. 2). Several lateral grid sizes

were examined and the response for each grid size was com-

pared to the smallest grid size. Convergence was established

if the RMSE between the response for a given grid size and

the response for the smallest grid size was below 0.1 dB. For

transducer 1, convergence was found at a lateral grid size of

250 lm microns, while convergence was found at 500 lm

for transducer 2. Figure 8 displays the response for each grid

size for transducer 1 (a) and transducer 2 (b). The normal-

ized frequency response converged to an f�1 dependence in

both cases.

D. Comparison of measurement, simulation,
and theory for a physically large cylindrical scatterer

Normalized frequency responses were estimated

[Eq. (14)] from scan data for three cylinders with different

diameters individually scanned in the focal plane of trans-

ducer 2. The diameter for each cylinder was estimated using

calipers (Table VII). The measured response was compared

to the simulated response for a cylinder producing the best

visual alignment of the peaks and nulls of the response. The

estimated and measured sizes agreed to within 3.5%.

Figure 9 depicts normalized frequency responses for the

measured and simulated cylinders centered at 0, 500, and

1000 lm from the beam axis. The simulated cylinder size

was chosen to produce the best alignment of the nulls of the

response as determined by visual assessment. The three

responses for each measured or simulated cylinder were nor-

malized by a single constant such that the 0 lm responses

were scaled to 0 dB at a peak in the response. The decrease

in the responses at 500 and 1000 lm positions with respect

to the response at the focus was quantified in Table VIII.

Simulation and experiment were in agreement to within

2.6 dB for two of the three cylinders (Table VIII).

A single cylinder with a radius of 1500 lm was simulated

at the focus of transducer 1 and transducer 2. Normalized fre-

quency responses for both transducers appear in Fig. 10(b).

For transducer 1, the best-fit form factor corresponded to a ra-

dius of 1460 lm (RMSE¼ 1.67 dB, 1.5–3 MHz), and for

transducer 2, the best-fit form factor corresponded to a radius

of 1490 lm (RMSE¼ 1.58 dB, 1.5–3 MHz). These best-fit

sizes correspond to differences with the true size of 2.7% and

0.6%, respectively, and to a difference of 2% between each

other.

These findings were next corroborated with experimen-

tal measurements. A water cylinder with a nominal radius

of 1500 lm was measured at the foci of two transducers

TABLE VI. Decrease of the response from focus response (sphere), measurement (M), and simulation (S).

Drop (dB) at 500 lm lateral position Drop (dB) at 1000 lm lateral position

Fig. 7 subplot Frequency (MHz) M S M - S M S M - S

a 3 2.18 1.81 0.37 11.87 11.01 0.86

b 3.25 2.82 1.81 1.01 9.55 8.85 0.7

c 3 2.26 2.06 0.20 8.62 10.40 �1.78

FIG. 7. (Color online) Measured (a)

and simulated (b) normalized fre-

quency responses of a single fish egg

for two transducers. Transducer 1 was

more highly focused and had a smaller

beam width.
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having the same diameter but different focal numbers.

Normalized frequency responses for the same fluid cylinder

appear in Fig. 10(a) for both transducers. A best-fit form

factor was found for both responses. For transducer 1, the

best-fit form factor corresponded to a radius of 1539 lm

(RMSE¼ 2.61 dB, 1.5–3 MHz), and for transducer 2, the

best-fit form factor corresponded to a radius of 1561 lm

(RMSE¼ 3.54 dB, 1.5–3 MHz), corresponding to a 1.4%

difference between the two size estimates, which is consist-

ent with simulation predictions.

V. DISCUSSION

Predictions for spheres and spheroids with the same

axial support were found to be identical in simulation (Fig.

5), supporting the choice of a spheroidal fish egg as an

acoustic model for a sphere. The response for a thin cylinder

at the focus is low-pass filtered by the beam, producing a dif-

ferent response from the plane-wave response. To examine

this effect, a thin (one sample in cross-section) cylinder was

simulated. The resulting normalized frequency response was

found to fall off as f�1 (Fig. 8) compared to the plane-wave

response. Thus, the effect of transducer beam diffraction is

to modify the plane-wave frequency dependence for the

response of a thin cylinder located in the focal plane and at

the focus by a factor of f�1.

The simulation results were corroborated with experi-

mental measurements. For spheres positioned in the focal

plane of the transducer, the simulated normalized frequency

responses were compared to the normalized frequency

responses from scans of fish eggs at the same lateral displace-

ment. The simulations captured the measured decrease in fre-

quency response as the scatterers were displaced laterally

from the focus (Fig. 6), and the magnitude of the fall-off at

FIG. 8. (Color online) Normalized frequency response for a thin (one spatial

sample in cross-section) cylinder for several lateral grid sizes (dx, lm):

transducer 1 (a) and transducer 2 (b).

TABLE VII. Cylinder diameter estimates for simulation and form factor

comparison and corresponding diameter measurements.

Cylinder Measured diameter (mm) Sim. best-fit diameter (mm)

a 0.90 0.93

b 1.50 1.55

c 3.00 3.02

FIG. 9. (Color online) Simulated

(solid) and measured (marker) normal-

ized frequency responses for three cyl-

inders at three lateral positions. The

cylinders had nominal diameters of

0.90 mm (a), 1.50 mm (b), and

3.00 mm (c).
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the last peak in the normalized frequency response agreed to

within 2 dB between measurement and simulation (Table

VI). Similarly, the difference between simulated and meas-

ured normalized frequency responses for cylinders (Table

VIII) was less than 3.5 dB. These results confirm that the sim-

ulations captured realistic beam effects. Likewise, compari-

son of single scatterer measurements at the focus using two

transducers having different focal properties was both quali-

tatively (shifting of the response toward a smaller scatterer

for the more highly focused transducer) and quantitatively

(1.1% decrease in estimated sizes for spheres, 1.4% decrease

for cylinders) consistent with the simulation comparison

(1.6% decrease for spheres, 2% decrease for cylinders).

The transducer response for a physically small sphere at

the focus should be equal to the plane-wave response for that

sphere under an ideal pulse excitation because the spatial

impulse response at the focus of a single-element transducer

is a delta function. On the other hand, simulation predictions

for physically large spheres and cylinders of a specified size

revealed that the response was altered somewhat from the

plane wave response by the beam for physically large scat-

terers. The simulated normalized frequency response for a

500 lm radius sphere at the focus of transducer 2 corre-

sponded to a best-fit form factor with a 498 lm radius, while

the more highly focused transducer resulted in a response

(Fig. 7) which agreed with the form factor for an even

smaller sphere (a¼ 490 lm). Similarly, for a 1500 lm radius

fluid cylinder (Fig. 10) the simulated responses for these two

transducers corresponded to the form factor for cylinders

with diameters of 1490 and 1460 lm, respectively. From the

standpoint of estimating a scatterer size, the impact of a large

weak scatterer in the beam of a transducer was to bias the

best-fit size estimate for the scatterer from the true scatterer

size by a few percent. The most likely explanation for this

phenomenon was the reduced depth of field of the more

highly focused transducer, which can be expected to produce

a frequency-dependent windowing of the scatterer in the

axial direction, making it to appear slightly smaller.

The results have important implications for size esti-

mates of collections of scatterers, and hence for tissues. The

fact that the transducer beam did not appreciably alter the

single-scatterer responses suggests that spectral quantitative

ultrasound techniques can be applied to media containing

dominant spherical scatterers which are comparable in size

to a wavelength or the transducer beam if normalization to

account scatterer positions is applied. If the beam contains a

scatterer that is on the order of the beam size, then the scat-

tering may be dominated by a few scatterers in the beam.

The same may be true for parallel cylinders. Good corre-

spondence was noted by Wear40 between backscatter coeffi-

cient estimates for single nylon wires oriented perpendicular

to the beam axis and Faran’s theory for a cylindrical scat-

terer under plane-wave insonification. Wear’s approach used

a reference phantom technique and applied a frequency-

dependent scaling factor to the experimental data to mimic

the effects of multiple parallel cylinders. Thus, estimation of

the plane-wave response for collections of identical parallel

cylinders may be feasible. If so, the single cylinder results

suggest that size estimates should not be significantly biased

compared to the true physical size for cylinders with diame-

ter comparable to a beam width. Finally, transducer 1 results

illustrate limiting behavior as single scatterers grow to be

TABLE VIII. Decrease of the response from focus response (cylinder), measurement (M), and simulation (S).

Decrease (dB) at 500 lm lateral position Decrease (dB) at 1000 lm lateral position

Fig. 9 subplot Frequency (MHz) M S M - S M S M - S

a 2.93 2.44 2.38 0.06 8.12 10.7 �2.58

b 2.75 2.22 2.28 �0.06 6.86 10.4 �3.54

c 2.9 2.02 2.02 0 8.72 8.72 0

FIG. 10. (Color online) Measured (a)

and simulated (b) normalized fre-

quency responses of a single cylinder

for two transducers. Transducer 1 was

more highly focused and had a smaller

beam width.
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slightly larger than the transducer beam width. Interestingly,

the resulting response corresponds closely to the plane-wave

response for a scatterer with physical dimensions 2%–3%

smaller than the scatterer being interrogated. Thus, size esti-

mates can be expected to be biased by only a small fraction

of the true scatterer size as the scatterers grow to be as large

as the transducer beam width assuming small impedance

mismatches between the scatterers and background.

VI. CONCLUSION

The method of Jensen34 was implemented to study the

response of weak spherical or cylindrical scatterers that are

comparable in diameter to the beam width of a single-

element transducer. Several important findings resulted from

this implementation and the corresponding measurements:

(1) The simulated response for a spheroidal scatterer was

equal to the response for a sphere with the same axial extent.

(2) As the sphere diameter grew to be comparable to a beam

width, the predicted response for a spherical scatterer corre-

sponded closely to the form factor for a sphere with a 2%

smaller radius. (3) The response for a single cylindrical scat-

terer in the focal plane was found to differ from the plane-

wave response for a cylinder by a factor of f�1. (4) As cylin-

der radii grew large compared to a beam width, the predicted

response for a cylindrical scatterer corresponded closely to

the form factor for a cylinder with a 2.7% smaller radius.

In the simulations, the need for specific values of the im-

pedance was avoided by frequency-independent normalization

of simulated and measured power spectra. Thus, only the fre-

quency dependence, and not the amplitude of the response,

was considered here. Future work will examine simulating the

magnitude of the response from known values of sound speed

and density, which will be important for simulating the

response for a medium that has more than two acoustic phases.

In addition to the above observations regarding the

behavior of physically large scatterers, this work provides

crucial implementation details for using the method of

Jensen to generate responses from structured random media.

Single scatterers were placed at different lateral positions in

the focal plane, and good correspondence was found

between simulated and measured results, suggesting that the

simulated response accurately captures transducer behavior

throughout the focal plane, and hence simulation of collec-

tions of scatterers should be possible. These results further

suggest that the plane-wave response may be estimated from

collections of scatterers which are not small compared to the

beam of a transducer. Future work will focus on the simula-

tion of collections of objects (i.e., collections of spheres or

parallel cylinders), the simulation of arbitrary spatial maps

of acoustic properties (i.e., acoustic maps not composed a

collection of simple shapes), and validating techniques for

code speed-up in order to rapidly generate simulated RF data

and B-mode images from 3D maps of tissue morphology.
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