875 research outputs found

    Correlated N-boson systems for arbitrary scattering length

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations and attractive finite-range potentials. We use a hyperspherical adiabatic method and apply a Faddeev type of decomposition of the wave function. We discuss the structure of a condensate as function of particle number and scattering length. We establish universal scaling relations for the critical effective radial potentials for distances where the average distance between particle pairs is larger than the interaction range. The correlations in the wave function restore the large distance mean-field behaviour with the correct two-body interaction. We discuss various processes limiting the stability of condensates. With correlations we confirm that macroscopic tunneling dominates when the trap length is about half of the particle number times the scattering length.Comment: 15 pages (RevTeX4), 11 figures (LaTeX), submitted to Phys. Rev. A. Second version includes an explicit comparison to N=3, a restructured manuscript, and updated figure

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801-2304 of approximately 160 \rad at an elongation of 0.95^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393μG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    The potential of pirtobrutinib in multiple B-cell malignancies

    Get PDF
    Bruton’s tyrosine kinase (BTK) is a critical downstream signaling element from the B-cell receptor (BCR) that has been effectively inhibited in B-cell cancers by irreversible, covalent inhibitors including ibrutinib and acalabrutinib. All FDA-approved covalent BTK inhibitors rely on binding to the cysteine 481 (C481) amino acid within the active site of BTK, thus rendering it inert. While covalent BTK inhibitors have been very successful in multiple B-cell malignancies, improving both overall survival and progression-free survival relative to chemoimmunotherapy in phase 3 trials, they can be limited by intolerance and disease progression. Pirtobrutinib is a novel, highly selective, and non-covalent BTK inhibitor that binds independently of C481, and in a recent, first-in-human phase 1/2 clinical trial was shown to be extremely well tolerated and lead to remissions in relapsed/refractory patients with multiple B-cell malignancies. Here, we review the pharmacologic rationale for pursuing non-covalent BTK inhibitors, the clinical need for such inhibitors, existing safety, and resistance mechanism data for pirtobrutinib, and the forthcoming clinical trials that seek to define the clinical utility of pirtobrutinib, which has the potential to fulfill multiple areas of unmet clinical need for patients with B-cell malignancies

    Raman coupler for a trapped two-component quantum-degenerate Fermi gas

    Full text link
    We investigate theoretically the Raman coupling between two internal states of a trapped low-density quantum-degenerate Fermi gas. In general, the trap frequencies associated with the two internal states can be different, leading to the onset of collapses and revivals in the population difference of the two internal states. This behavior can be changed drastically by two-body collisions. In particular, we show that under appropriate conditions they can suppress the dephasing leading to the collapse of the population difference, and restore almost full Rabi oscillations between the two internal states. These results are compared and contrasted to those for a quantum-degenerate bosonic gas.Comment: 7 pages incl. 7 PostScript figures (.eps), LaTeX using RevTeX4, submitted to Phys. Rev. A, modified versio

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Scaling predictions for radii of weakly bound triatomic molecules

    Full text link
    The mean-square radii of the molecules 4^4He3_3, 4^4He26_2-^6Li, 4^4He27_2-^7Li and 4^4He223_2-^{23}Na are calculated using a three-body model with contact interactions. They are obtained from a universal scaling function calculated within a renormalized scheme for three particles interacting through pairwise Dirac-delta interaction. The root-mean-square distance between two atoms of mass mAm_A in a triatomic molecule are estimated to be of de order of C2/[mA(E3E2)]{\cal C}\sqrt{\hbar^2/[m_A(E_3-E_2)]}, where E2E_2 is the dimer and E3E_3 the trimer binding energies, and C{\cal C} is a constant (varying from 0.6\sim 0.6 to 1\sim 1) that depends on the ratio between E2E_2 and E3E_3. Considering previous estimates for the trimer energies, we also predict the sizes of Rubidium and Sodium trimers in atomic traps.Comment: 7 pages, 2 figure

    Bessel Process and Conformal Quantum Mechanics

    Full text link
    Different aspects of the connection between the Bessel process and the conformal quantum mechanics (CQM) are discussed. The meaning of the possible generalizations of both models is investigated with respect to the other model, including self adjoint extension of the CQM. Some other generalizations such as the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are discussed with respect to the underlying conformal group structure.Comment: 28 Page
    corecore