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Abstract.

We study the regularization properties of iterative minimum-residual methods ap-
plied to discrete ill-posed problems. In these methods, the projection onto the under-
lying Krylov subspace acts as a regularizer, and the emphasis of this work is on the
role played by the basis vectors of these Krylov subspaces. We provide a combination
of theory and numerical examples, and our analysis confirms the experience that MIN-
RES and MR-II can work as general regularization methods. We also demonstrate
theoretically and experimentally that the same is not true, in general, for GMRES and
RRGMRES – their success as regularization methods is highly problem dependent.
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1 Introduction

We study iterative methods for solution of large-scale discrete ill-posed prob-
lems of the form Ax = b with A ∈ Rn×n arising from discretization of an
underlying linear ill-posed problem. Our focus is on iterative regularization, and
in particular the minimum-residual methods GMRES and MINRES, for which
the projection onto the underlying Krylov subspace may have a regularizing ef-
fect (and the dimension of the Krylov subspace therefore acts as a regularization
parameter). Our goal is to study some of the mechanisms behind this behavior.

The singular value decomposition (SVD) A = UΣV T =
∑n
i=1 uiσiv

T
i provides

a natural tool for analysis of discrete ill-posed problems, for which the singular
values σi cluster at zero, and the right-hand side coefficients uTi b satisfy the
discrete Picard condition (DPC): on average, their absolute values decay faster
than the singular values.

In the presence of noise in the right-hand side b, the “naive” solution A−1b
is completely dominated by inverted noise. Regularized solutions can be com-
puted by truncating or filtering the SVD expansion. For example, the truncated
SVD (TSVD) method yields solutions xk =

∑k
i=1 σ

−1
i (uTi b) vi. Tikhonov regu-

larization is another well-known method which, in its standard form, takes the
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form xλ = argminx
{‖b−Ax‖22 + λ2‖x‖22

}
, and the solution xλ can be written

in terms of the SVD of A as xλ =
∑n
i=1 σi(σ

2
i + λ2)−1(uTi b) vi.

In general, a filtered SVD solution takes the form

(1.1) xfilt =
n∑

i=1

φi
uTi b

σi
vi = V ΦΣ†UT b,

where Φ = diag(φi) is a diagonal filter matrix, and the filter factors are φi ∈
{0, 1} for TSVD and φi = σ2

i /(σ
2
i +λ2) for Tikhonov regularization. Other reg-

ularization methods take a similar form, with different expressions for the filter
factors. The effect of the filter is to remove the SVD components corresponding
to the smaller singular values, and thereby to stabilize the solution.

The TSVD and Tikhonov methods are not always suited for large-scale prob-
lems. An alternative is to use iterative regularization, i.e., to apply an iterative
method directly to Ax = b or minx ‖b−Ax‖2 and obtain a regularized solution
by early termination of the iterations. These methods exhibit semi-convergence,
which means that the iterative solution improves during the first iterations, while
at later stages the inverted noise starts to deteriorate the solution. For example,
CGLS – which implicitly applies conjugate gradients to the normal equations
ATAx = AT b – has this desired effect [8], [9], [14].

Other minimum-residual methods have also attained interest as iterative reg-
ularization methods. For some problems with a symmetric A, the algorithms
MINRES [16] and MR-II [8] (which avoid the implicit cross-product ATA in
CGLS) have favorable properties [8], [10], [14], [15]; in other situations they
converge slower than CGLS.

If A is nonsymmetric and multiplication with AT is difficult or impractical
to compute, then CGLS is not applicable. GMRES [17] may seem as a nat-
ural candidate method for such problems, but only a few attempts have been
made to investigate the regularization properties of this method and its variant
RRGMRES [3], cf. [2], [4], [5].

The goal of this work is to perform a systematic study of the regularization
properties of GMRES and related minimum-residual methods for discrete ill-
posed problems, similar to Hanke’s study [9] of the regularization properties of
CGLS. Our focus is on the underlying mechanisms, and we seek to explain
why – and when – such methods can be used for regularization. The hope is
that our analysis will give better intuitive insight into the mechanisms of the
regularization properties of these methods, which can aid the user in the choice
of method.

In §2 we outline the theory for the minimum-residual methods considered
here, and in §3 we take a closer look at the basis vectors for the underlying
Krylov subspaces. In §4 we perform a theoretical and experimental study of
the behavior of MINRES and the variant MR-II applied to symmetric indefinite
problems, and in §5 we perform a similar analysis of GMRES and the variant
RRGMRES applied to nonsymmetric problems.
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Table 2.1: Minimum-residual methods and their Krylov subspaces.

Matrix Algorithm Krylov subspace Solution

Symmetric MINRES Kk(A, b) x(k)

MR-II Kk(A,Ab) x̄(k)

Nonsymmetric GMRES Kk(A, b) x(k)

and square RRGMRES Kk(A,Ab) x̄(k)

Any CGLS, LSQR Kk(ATA,AT b) x̂(k)

2 Minimum-Residual Krylov Subspace Methods

In a projection method we seek an approximate solution to Ax = b for x ∈ Sk,
where Sk is some suitable k-dimensional subspace. Minimum-residual methods
are special projection methods where the criterion for choosing x amounts to
minimization of the 2-norm of the residual:

min
x
‖b−Ax‖2, s.t. x ∈ Sk.

For example, the TSVD solution xk minimizes the 2-norm of the residual over
the subspace Sk = span{v1, v2, . . . , vk} spanned by the first k right singular
vectors. For the solution subspace Sk we can also use a Krylov subspace, such
as Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}. Table 2.1 lists several Krylov subspace
methods, and we note that only CGLS allows a rectangular A matrix.

The variants MINRES and MR-II for symmetric matrices are based on three-
term recurrence schemes for generating the desired Krylov subspaces, while GM-
RES and RRGMRES need to carry along the entire set of basis vectors for their
Krylov subspaces. Throughout this paper, we always use the symmetric variants
when A is symmetric.

The methods RRGMRES and MR-II based on Kk(A,Ab) were originally de-
signed for solving singular and inconsistent systems, and they restrict the Krylov
subspace to be a subspace of R(A), the range of A. When A = AT this has the
effect that MR-II computes the minimum-norm least squares solution [7]; for a
general matrix A, RRGMRES computes the minimum-norm least squares solu-
tion when R(A) = R(AT ) [3]. This is not the case for MINRES and GMRES.

When solving discrete ill-posed problems, we are not interested in the final
convergence to the minimum-norm least squares solution, but rather in a good
regularized solution. The Krylov subspace Kk(A,A b) may still be favorable to
Kk(A, b), because the noise in the initial Krylov vector of the former subspace
is damped by multiplication with A. A similar effect is automatically achieved
in the CGLS subspace Kk(ATA,AT b) due to the starting vector AT b. The
subspace Kk(A, b) includes directly the noise component present in b, which can
have a dramatic and undesirable influence on the early iteration vectors. For



4 T. K. Jensen and P. C. Hansen

this reason, RRGMRES and MR-II may provide better regularized solutions
than GMRES and MINRES.

Our analysis of the algorithms is based on the fact that any solution in a
Krylov subspace can be written in polynomial form. For example, for GMRES
or MINRES we can write the kth iterate as

x(k) = Pk(A) b,

where Pk is a polynomial of degree ≤ k−1. The corresponding residual b−Ax(k)

is therefore given by

b−APk(A) b =
(
I −APk(A)

)
b = Qk(A) b,

where Qk(A) = I − APk(A) is a polynomial of degree ≤ k with Qk(0) = 1.
There are similar expressions for the RRGMRES/MR-II and CGLS solutions:

x̄(k) = Pk+1(A) b, x̂(k) = P̂k(ATA)AT b.

The RRGMRES/MR-II polynomial Pk+1 has degree ≤ k (instead of k− 1) and
the constant term is zero by definition.

The SVD of A allows us to carry out a more careful study of the Krylov
subspaces. For the GMRES and RRGMRES Krylov subspaces we obtain

Kk(A, b) = span{b, UΣV T b, . . . , (UΣV T )k−1b},
Kk(A,Ab) = span{UΣV T b, (UΣV T )2b, . . . , (UΣV T )kb},

respectively. If we define the orthogonal matrix C as well as the vector β by

(2.1) C = V TU, β = UT b,

then the GMRES iterates x(k) and the RRGMRES iterates x̄(k) satisfy

(2.2) V Tx(k) ∈ Kk(CΣ, Cβ), V T x̄(k) ∈ Kk(CΣ, CΣCβ).

It follows that we can write the GMRES and RRGMRES solutions as

x(k) = V Φk Σ†β, Φk = Pk(C Σ)C Σ,(2.3)
x̄(k) = V Φk Σ†β, Φk = Pk+1(C Σ)C Σ.(2.4)

Due to the presence of the matrix C, the “filter matrices” Φk and Φk are full,
in general. Hence, neither the GMRES nor the RRGMRES iterates have a
filtered SVD expansion of the form (1.1) (the SVD components are “mixed” in
each iteration), and therefore we cannot expect that these iterates resemble the
TSVD or Tikhonov solutions.

When A is symmetric we can write A = V ΩΣV T , where Ω = diag(±1) is a
signature matrix and ΩΣ contains the eigenvalues of A. Hence C = Ω, and the
Krylov subspaces in (2.2) simplify to

(2.5) V Tx(k) ∈ Kk
(
ΩΣ,Ωβ

)
, V T x̄(k) ∈ Kk(ΩΣ,Σβ).
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In this case the “filter matrices” Φk = Pk(ΩΣ)ΩΣ and Φk = Pk+1(ΩΣ)ΩΣ are
diagonal (possibly with some negative elements), and therefore the MINRES
and MR-II iterates have simple expressions in the SVD basis.

For the CGLS algorithm we have ATA = V Σ2V T , and it follows that

(2.6) Kk(ATA,AT b) = span{V ΣUT b, V Σ3UT b, . . . , V Σ2k−1UT b},

and that the CGLS iterates x̂(k) satisfy

(2.7) x̂(k) = V Φ̂k Σ†β, Φ̂k = P̂k(Σ2)Σ2,

where Φ̂k is a diagonal matrix and P̂k is the CGLS polynomial introduced above.
This relation shows that the CGLS iterates x̂(k) also have a simple expression
in the SVD basis, namely, as a filtered SVD expansion of the form (1.1) with
nonnegative filter factors given in terms of the polynomial P̂k.

The Krylov vectors for CGLS, MINRES and MR-II, respectively, have the
form

(2.8) V Σ2k−1β, V (ΩΣ)k−1Ωβ and V (ΩΣ)k−1Σβ,

for k = 1, . . . , n. The diagonal elements of Σ decay, and so do the coefficients
in β, on average, due to the DPC. Therefore the first SVD components will,
in general, be more strongly represented in these Krylov subspaces than SVD
components corresponding to smaller singular values. This indicates a corre-
spondence of the CGLS, MINRES and MR-II solutions with both TSVD and
Tikhonov solutions which are also, primarily, spanned by the first right singular
vectors. A similar argument cannot be used to demonstrate that the GMRES
and RRGMRES solutions are regularized solutions, due to the mixing by the
full matrix C in each iteration.

3 A Closer Look at the Solution Subspaces

Depending on the method used, the iterates lie in one of the three subspaces
R(A), R([A, b]) and R(AT ), as listed in Table 3.1, and this has an effect on
the regularized solutions produced by the three methods. For this study, it
is important to note that discrete ill-posed problems in practise – due to the
decaying singular values and the effects of finite-precision arithmetic – behave
as if the matrix A is rank deficient.

From Table 3.1 it is clear why CGLS and MR-II are successful as iterative
regularization methods: they produce solutions in subspaces ofR(AT ), similar to
TSVD and Tikhonov. MINRES can also be used, but we get a subspace ofR(AT )
only for consistent systems – and unfortunately discrete ill-posed problems with
noisy data behave as inconsistent problems. Neither GMRES nor RRGMRES
produce solutions in the desired subspace R(AT ).

For symmetric matrices, the DPC implies that all the Krylov vectors in Eq. (2.8)
have elements which, on average, decay for increasing index i. However, due to
the different powers of Σ, the damping imposed by the multiplication with the
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Table 3.1: Overview of the fundamental subspaces in which the iterates lie, with
R(A) = span{u1, . . . , ur}, R([A, b]) = span{b, u1, . . . , ur}, R(AT ) = span{v1, . . . , vr}
and r = rank of A.

Subspace Method Krylov subspace Kind of system

R(A) GMRES Kk(A, b) consistent systems
RRGMRES Kk(A,Ab) all systems

R([A, b]) GMRES Kk(A, b) inconsistent systems
MINRES Kk(A, b) inconsistent systems

R(AT ) MINRES Kk(A, b) consistent systems
MR-II Kk(A,Ab) all systems
CGLS Kk(ATA,AT b) all systems

singular values is different for these methods. For example, the kth CGLS Krylov
vector is equal to the 2kth Krylov vector of MINRES and the (2k− 1)st Krylov
vector of MR-II. Moreover, the vector b appears undamped in the MINRES
basis, while in the CGLS and MR-II bases it is always damped by AT and A,
respectively. In the presence of noise, the fact that b appears undamped in the
MINRES Krylov subspace R([A, b]) = R([AT , b]) can have a dramatic impact,
as we illustrate below.

For nonsymmetric matrices the behavior of CGLS is identical to the symmetric
case. On the other hand, the Krylov vectors for GMRES and RRGMRES are
different, cf. (2.2); even if the DPC is fulfilled, we cannot be sure that the
coefficients |vTi b| decay, on average, for increasing index i. Furthermore, due to
the presence of the non-diagonal matrix CΣ, no structured damping of these
coefficients is obtained because the SVD components are “mixed.” This means
that GMRES and RRGMRES, in general, cannot be assumed to produce a
solution subspace that resembles that spanned by the first right singular vectors.

Below we illustrate these issues with two numerical examples, in which the
n×k matrices Wk, W k and Ŵk have orthonormal columns that span the Krylov
subspaces for GMRES/MINRES, RRGMRES/MR-II and CGLS, respectively.

3.1 Example: Krylov Subspaces for a Symmetric Matrix

We use the symmetric problem deriv2(100,3) from Regularization Tools [11]
with a 100×100 coefficient matrix, and add white Gaussian noise e to the right-
hand side such that b = Axexact + e with ‖e‖2/‖Axexact‖2 = 5 · 10−4. Figure 3.1
shows the relative errors for a series of CGLS, MINRES and MR-II iterates, as
well as the relative errors of similar TSVD solutions.

MINRES does not reduce the relative error as much as the other methods due
to the noise component in the initial Krylov vector. MR-II and CGLS reduce the
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Figure 3.1: Symmetric test problem deriv2(100,3). Top left: the relative error
‖xexact−x(k)‖2/‖xexact‖2 for CGLS, MINRES and MR-II, and ‖xexact−xk‖2/‖xexact‖2
for TSVD. Remaining plots: the first five orthonormal Krylov vectors of the CGLS,
MINRES and MR-II subspaces in the SVD basis.

relative error to about the same level, 0.0117 for MR-II and 0.0125 for CGLS, in
5–6 iterations. This makes MR-II favorable for this problem, because the number
of matrix-vector multiplications is halved compared to CGLS. The best TSVD
solution includes 11 SVD components, which indicates that the CGLS and MR-
II solution subspaces are superior compared to the TSVD solution subspace of
equal dimensions. This fact was originally noticed by Hanke [9].

Figure 3.1 also shows the first five orthonormal Krylov vectors expressed in
terms of the right singular vectors vi, i.e., the first five columns of |V TWk|,
|V TW k| and |V T Ŵk|. We see that the CGLS and MR-II vectors are mainly
spanned by the first right singular vectors as expected, and that the contribution
from the latter singular vectors is damped. We also see that the contribution
from the latter right singular vectors is much more pronounced for MINRES due
to the direct inclusion of the noise.

3.2 Example: Krylov Subspaces for a Nonsymmetric Matrix

Here we use the nonsymmetric problem ilaplace(100) from Regularization Tools
[11] with a coefficient matrix of size 100×100 and additive white Gaussian noise
e with ‖e‖2/‖Axexact‖2 = 5 · 10−4. Figure 3.2 shows plots similar to those for
the symmetric case. Only TSVD and CGLS are able to reduce the relative
error considerably; neither GMRES nor RRGMRES produce iterates with small
relative errors.

We note that the CGLS Krylov vectors behave similar to the symmetric case,
i.e., the components that correspond to small singular values are effectively
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Error histories CGLS: |V T Ŵk|

0 5 10 15 20

10
−1

10
0

 

 

TSVD
LSQR
GMRES
RRGMRES

0 20 40 60 80 100
10

−10

10
−5

10
0

GMRES: |V TWk| RRGMRES: |V TW k|

0 20 40 60 80 100
10

−10

10
−5

10
0

0 20 40 60 80 100
10

−10

10
−5

10
0

Figure 3.2: Nonsymmetric test problem ilaplace(100). Top left: the rela-
tive errors ‖xexact − x(k)‖2/‖xexact‖2 for CGLS, GMRES and RRGMRES, and
‖xexact−xk‖2/‖xexact‖2 for TSVD. Remaining plots: the first five orthonormal Krylov
vectors of the CGLS, GMRES and RRGMRES subspaces in the SVD basis.

damped. Furthermore, we see that the GMRES and RRGMRES Krylov vec-
tors do not exhibit any particular damping. In fact, all Krylov vectors contain
significant components along all right singular vectors – including those that
correspond to small singular values. Therefore the GMRES and RRGMRES it-
erates are composed not only of the first right singular vectors, they also include
significant components in the direction of the last right singular vectors.

4 Iterative Regularization with MINRES and MR-II

We can express the MINRES and MR-II residual norms as

‖b−Ax(k)‖2 = ‖Qk(ΩΣ)β‖2, ‖b−A x̄(k)‖2 = ‖Qk+1(ΩΣ)β‖2,
where Qk is the MINRES residual polynomial defined in Section 2, and Qk+1 =
I −APk+1(A) is the MR-II residual polynomial. Since these methods minimize
the residual’s 2-norm in each iteration, the effect of the residual polynomial is
to “kill” the large components of |β|. Hence the residual polynomials must be
small at those eigenvalues for which |β| has large elements. (On the other hand,
if a component |β| is small, then the corresponding value of the residual poly-
nomial need not be small.) Thus, MINRES and MR-II have the same intrinsic
regularization property as the CGLS algorithm.

The main difference is that CGLS only has to “kill” components for posi-
tive eigenvalues of ATA, while – for indefinite matrices – MINRES and MR-
II must “kill” components corresponding to both positive and negative eigen-
values of A. The latter is more difficult, due to the polynomial constraints
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x = vec(X) b = vec(B) Pb

Figure 4.1: True and blurred images for the symmetric two-dimensional problem.

Qk(0) = Qk+1(0) = 1. These issues have been studied in more detail for MIN-
RES [14], [15], and also for general symmetric minimum-residual methods, see
[6] and the references therein.

Below we present two examples which illustrate the above observations and
support the results obtained by Kilmer and Stewart [15]. Our examples also
illustrate that the definiteness of the coefficient matrix affects the convergence
and the iterates of the MINRES and MR-II, while both methods still produce
regularized solutions. Furthermore, we demonstrate that MINRES and MR-II
concentrate on the components that are significant for reducing the residual,
i.e., the large right-hand side components in the eigenvector basis. A similar
observation was done by Hanke [9] for CGLS.

4.1 Example: Image Deblurring with a Symmetric Matrix

Let X ∈ R30×30 be the sharp image seen in Fig. 4.1 (left), and let the ma-
trix A be a discretization of a two-dimensional Gaussian blurring [12] with zero
boundary conditions. The blurred image B ∈ R30×30 is shown in Fig. 4.1 (mid-
dle). The discrete ill-posed problem takes the form Ax = b where x = vec(X) is
the column-wise stacked image X, and b = vec(B) is the stacked image B. We
added white Gaussian noise to b with ‖e‖2/‖Axexact‖2 = 10−2.

The coefficient matrix A is both symmetric and persymmetric, i.e., A = AT

and PA = (PA)T , where P is the reversal matrix. Moreover, A is positive
definite and PA is indefinite. Since the 2-norm is invariant under multiplication
with P it follows that ‖b−Ax‖2 = ‖P b−PAx‖2 where the permuted vector Pb
represents a 180◦ rotation of B as shown in Fig. 4.1 (right). We apply CGLS,
MINRES and MR-II to the two problems

(4.1) Ax = b and PAx = P b.

Obviously, the CGLS Krylov subspaces for the two problems are identical be-
cause Kk(ATPTPA,ATPTPb) = Kk(ATA,ATA). However, this is not the
case for MINRES and MR-II because Kk(A, b) 6= Kk(PA,Pb) and Kk(A,Ab) 6=
Kk(PA,PAPb).

Figure 4.2 shows the reduction of the residual norms for the three methods
applied to both versions of the problem. No reorthogonalization of the Krylov
vectors is performed. Obviously, the convergence of CGLS is the same for the



10 T. K. Jensen and P. C. Hansen

5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

iterations

re
si

du
al

 n
or

m

 

 

CGLS
MINRES
MR−II

Figure 4.2: Reduction of the residual for CGLS, MINRES and MR-II, for the original
problem (dashed lines) and the permuted problem (dotted lines) in (4.1).

Table 4.1: Number of iterations and relative error for best iterates, for the deblurring
problems in §4.1 and §4.2.

CGLS MINRES MR-II
Problem its rel. err its rel. err its rel. err
Ax = b 59 0.4680 6 0.4916 20 0.4678
PAx = P b 59 0.4680 81 0.4682 79 0.4681
Ax′ = b′ 84 0.4823 9 0.5166 24 0.4817
PAx′ = P b′ 83 0.4823 95 0.4864 93 0.4834

two problems, whereas the convergence of MINRES and MR-II is faster than
the convergence of CGLS when applied to Ax = b, and slower when applied to
the permuted problem.

Figure 4.3 shows the eigenvalues for the two problems, together with the resid-
ual polynomials for the first four iterations of MINRES and MR-II. Both residual
polynomials satisfy Qk(0) = 1 and Qk+1(0) = 1, and in addition Q′k+1(0) = 0.
We see that the residual polynomials behave better – i.e., they are small for a
greater range of eigenvalues – when all eigenvalues are positive. This explains
why the convergence is faster for the problem with the positive definite matrix A.

Table 4.1 gives more information about the convergence of the two methods
for the two problems, namely, the number of iterations and the relative error of
the iterates with the smallest relative errors (compared to the exact solution).
CGLS performs identically for the two problems. For the original problem, CGLS
and MR-II produce slightly better solutions than MINRES, and MR-II needs
much fewer iterations than CGLS; moreover MINRES produces a slightly inferior
solution in only six iterations. For the permuted problem all three methods
produce solutions of the same quality. MR-II and MINRES are comparable in
speed and faster than CGLS (because CGLS needs two matrix-vector products
per iteration).
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Figure 4.3: The first four residual polynomials (solid, dashed, dotted, and dash-dotted
lines) for MINRES and MR-II applied to the original positive definite problem Ax = b
and the permuted indefinite problem PAx = P b. The eigenvalues of A and PA,
respectively, are shown by the small crosses.

4.2 Example: The Role of the Solution Coefficients

The residual polynomials of the methods also depend on the coefficients of the
solution (and the right-hand side) in the eigenvector basis; not just the eigen-
values. To illustrate this, we create another sharp image X ′ which is invariant
to a 180◦ rotation, i.e., the column-wise stacked image satisfies Px′ = x′. The
symmetries of A imply that the blurred image B′ also satisfies Pb′ = b′, and
again the noise level in b is such that ‖e‖2/‖Axexact‖2 = 10−2. The sharp and
blurred images are shown in Fig. 4.4.

For this particular right-hand side, the components in the eigenvector ba-
sis that correspond to negative eigenvalues of PA are small (they are nonzero

x′ = vec(X ′) b′ = vec(B′)

Figure 4.4: True and blurred images for the modified problem Ax′ = b′.
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Figure 4.5: MINRES residual polynomials for the modified problems Ax′ = b′ and
PAx′ = P b′ (where A is positive definite and PA is indefinite). The eigenvalues are
shown by the small crosses. The first four residual polynomials (bottom left plot)
are not affected by the negative eigenvalues of PA, while the next four polynomials
(bottom right plots) are.

solely due to the added noise). Therefore, in the initial iterations the residual
polynomials need not pay as much attention to the negative eigenvalues. Fig-
ure 4.5 shows the MINRES residual polynomials corresponding to the first eight
iterations, for both problems Ax′ = b′ and PAx′ = P b′. Note that the first
four polynomials are practically identical for the two problems, showing that
MINRES is not affected by the small components corresponding to the negative
eigenvalues. For the next four iterations, the small noise components for the
negative eigenvalues start to affect the residual polynomials, thus slowing down
the convergence. The situation is similar for the MR-II polynomials and not
shown here.

This example illustrates that – at least in theory – the convergence for an
indefinite problem can be similar to that of a definite problem. In practise,
however, when noise is present in the right-hand side the convergence is always
slower for the indefinite problem. Table 4.1 shows the convergence results which,
in essence, are very similar to those for the previous example: both MINRES and
MR-II produce regularized solutions, and in terms of computational work they
are both favorable compared to CGLS.



Iterative Regularization with Minimum-Residual Methods 13

5 Iterative Regularization with GMRES and RRGMRES

We now consider systems with nonsymmetric coefficient matrices and the
Krylov methods GMRES and RRGMRES. Saad and Schultz [17, §3.4] showed
that for any nonsingular matrix A the GMRES iterations do not break down
until the exact solution is found. On the other hand, as noted, e.g., by Brown
and Walker [1], anything may happen when A is singular. Our interest is in
numerically singular systems (i.e., systems with tiny singular values), and we
distinguish between rank-deficient problems and ill-posed problems.

5.1 Rank-Deficient Problems

Rank-deficient problems are characterized by having a distinct gap between
“large” and “small” singular values. If the underlying operator has a null space,
then the matrix A has small singular values whose size reflects the discretization
scheme and the machine precision. Therefore, it makes sense to define the nu-
merical subspaces R(A), N (AT ), R(AT ) and N (A), where the null spaces are
spanned by the singular vectors corresponding to the small singular values.

If A is rank-deficient and the noise in the right-hand side is so small that it
primarily affects the SVD components outside R(A), then the minimum-norm
least squares solution A†b (which is really a TSVD solution) is a good regularized
solution. On the other hand, if the noise in the right-hand side is larger such
that it also affects the components of b inR(A), then the problem effectively acts
like a discrete ill-posed problem, and the solution must be further regularized to
minimize the effect of the noise.

It was shown by Brown and Walker [1, Thm. 2.4] that GMRES computes the
minimum-norm least squares solution if the system fulfills N (A) = N (AT ) and
if it is consistent. In this case GMRES constructs a solution in R(A) = R(AT ),
and it is obvious that if no solution components in R(A) are too affected by the
noise, then GMRES will eventually produce a suitable regularized solution.

5.2 Example: Numerically Rank-Deficient Problem

When the noise level is small, then the test problem heat from Regularization
Tools [11] behaves as a numerically rank-deficient problem. For n = 100 the
first 97 singular values lie between 10−7 and 10−3, while the last three are of the
order 10−15. We add white Gaussian noise to b with ‖e‖2/‖Axexact‖2 = 10−8,
such that the first 97 SVD components of b are almost unaffected by the noise.

Figure 5.1 shows the relative errors compared to the exact solution for GM-
RES, RRGMRES and CGLS, and we see that only CGLS converges. The rea-
son is that for this problem we have N (A) = span{v98, v99, v100} 6= N (AT ) =
span{u98, u99, u100} (see Fig. 5.2), such that neither GMRES nor RRGMRES
are guaranteed to produce the desired minimum-norm least squares solution.

5.3 Discrete Ill-Posed Problems

For discrete ill-posed problems, the notion of numerical subspaces is not well
defined due to decaying singular values with no gap in the spectrum. Moreover,
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Figure 5.1: Relative errors for the first 40 iterations of GMRES, RRGMRES and CGLS
applied to the rank-deficient inverse heat problem.

Figure 5.2: The vectors spanning N (A) and N (AT ) for the inverse heat problem. From
left to right, the left null vectors u98, u99, u100 and the right null vectors v98, v99, v100.

for GMRES and RRGMRES a mixing of the SVD components occurs in each
iteration, due to the presence of the matrix C = V TU in the expression for the
Krylov vectors, cf. (2.2). The mixing takes place right from the start:

vTi b =
n∑

j=1

cij βj , vTi Ab =
n∑

j=1

(
n∑

`=1

σ` ci` c`j

)
βj .

An important observation here is that the noisy components of b are also
mixed by C, and therefore the non-diagonal filters of GMRES and RRGMRES
not only change the solution subspaces, but also mix the contributions from
the noisy components. This is contrary to spectral filtering methods such as
TSVD, Tikhonov regularization, CGLS and MINRES/MR-II. In particular, the
first iterations of GMRES and RRGMRES need not favor the less noisy SVD
components in the solution, and the later iterations need not favor the more
noisy components.

5.4 Example: Image Deblurring – GMRES and RRGMRES Work

GMRES and RRGMRES were proposed for image deblurring in [2] and [4];
here we consider a test problem similar to Example 4.3 in [4] with spatially



Iterative Regularization with Minimum-Residual Methods 15

0 500 1000

0

200

400

600

800

1000

1200

1400
 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.3: Illustration of the “structure” of the matrix C = V TU for the image
deblurring problem; only matrix elements |cij | ≥ 0.1 are shown.

variant Gaussian blur, in which the nonsymmetric coefficient matrix is given by

A =
(
Io 0
0 0

)(
T1 ⊗ T1

)
+
(

0 0
0 Io

)(
T2 ⊗ T2

)
,

where Io is the n
2× n

2 identity matrix, and T1 and T2 are N×N Toeplitz matrices:

(T`)ij =
1

σ`
√

2π
exp

(
−1

2

(
i− j
σ`

)2
)
, ` = 1, 2

with σ1 = 4 and σ2 = 4.5. This models a situation where the left and right
halves of the N ×N image are degraded by two different point spread functions.

Here we use N = 38 (such that n = N2 = 1444). For a problem of this size we
can explicitly calculate the SVD of A. The singular values (not show here) de-
cay gradually from σ1 = 1 to σ800 ≈ 10−16, while the remaining singular values
stay at this level. The “structure” of C = V TU is illustrated in Fig. 5.3 which
shows all elements |cij | ≥ 0.1. Although A is nonsymmetric, the matrix C is
close to diagonal in the upper left corner (which corresponds to the numerically
nonzero singular values). Therefore, GMRES and RRGMRES will only intro-
duce a limited amount of “mixing” between the SVD components of the Krylov
subspaces, and moreover the SVD components corresponding to the numerically
zero singular values will not enter the Krylov subspaces. Hence GMRES and
RRGMRES can be expected to compute regularized solutions in the SVD basis,
confirming the experimental results in [4].

5.5 Example: Test Problem baart – GMRES and RRGMRES Work

Here we use the test problem baart(100) from Regularization Tools [11], and we
added white Gaussian noise e to the right-hand side such that ‖e‖2/‖Axexact‖2 =
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CGLS k = 4 GMRES k = 3 RRGMRES k = 3

Figure 5.4: Best iterates of CGLS, GMRES and RRGMRES applied to the baart(100)
test problem (the exact solution is shown by the dotted lines).
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Figure 5.5: The coefficients of exact solution xexact to the baart(100) test problem in
the bases of the left and right singular vectors.

10−3. Figure 5.4 shows the best CGLS, GMRES and RRGMRES iterates. Note
that especially RRGMRES approximates the exact solution very well; the best
GMRES solution is somewhat more noisy, but it also approximates the exact
solution quite well. The best CGLS solution is not noisy, but neither is it a good
approximation to the exact solution.

For this problem, the matrix C = V TU (not shown here) is far from a diagonal
matrix, and hence the SVD components are considerably mixed in the Krylov
subspaces of GMRES and RRGMRES. The reason why these methods are able
to approximate the exact solution so well is that the solution subspaces (spanned
by the left singular vectors ui) are favorable for approximating this particular
solution.

Figure 5.5 shows the coefficients of the exact solution xexact in the left and
right singular vector bases. The singular values σi for i > 15 are at the rounding
error level, and therefore the coefficients uTi x

exact and vTi x
exact are unreliable

for i > 15. We see that xexact is indeed well expressed by a few left singular
vectors ui, while more right singular vectors vi (the “usual” basis vectors for
regularized solutions) are needed. I.e., the solution we seek is better represented
in a small subspace of R(A) than in a subspace of R(AT ), cf. Table 2.1. For
this particular problem, both CGLS, TSVD and Tikhonov regularization are not
particularly well suited, and GMRES and RRGMRES happen to produce better
solution subspaces and better regularized solutions.
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Figure 5.6: Results for the ilaplace(100) test problem. Left: the iteration count k
for optimal CGLS, GMRES and RRGMRES solutions as a function of the noise level.
Right: the corresponding relative errors ‖xexact−x(k)‖2/‖xexact‖2 versus the noise level.

5.6 Example: Test Problem ilaplace – GMRES and RRGMRES Fail

Finally, we consider the nonsymmetric problem ilaplace(100) from Regular-
ization Tools [11]. The singular values decay gradually and hit the machine
precision around index 30. The noise vector e contains white Gaussian noise,
and we use 100 different scalings of e such that ‖e‖2/‖Axexact‖2 is logarithmically
distributed between 10−10 and 100.

For each noise level, we perform 30 iterates of CGLS, GMRES and RRGMRES,
and the iterates with smallest relative errors are found for all methods and all
noise levels. Figure 5.6 shows the iteration count for the best solution as a
function of the noise level, as well as the corresponding relative errors versus the
noise level.

For CGLS there is a clear correspondence between the noise level and the
number of iterations – for a high noise level only few iterations can be performed
before the noise distorts the solutions, while more iterations can be performed
for a lower noise level. The plot of the relative errors confirms that, overall, the
solutions get better as the noise level decreases.

The same behavior is not observed for GMRES and RRGMRES. For small
noise levels, the solutions do not improved beyond a certain level, and for higher
noise levels the optimal number of iterations is unpredictable. For example, for
the noise level 10−10, the 4th RRGMRES iterate is the optimal solution, with
a relative error of 0.3500, but for the higher noise level 1.15 · 10−4 the best
RRGMRES iterate is the 10th, with a relative error of only 0.04615.

As mentioned in §5.3 the sensitivity to the noise is indeed very different for
GMRES and RRGMRES than for CGLS. The behavior observed for this ex-
ample indicates that it may be very difficult to find suitable stopping rules for
GMRES and RRGMRES.
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5.7 Normal Matrices

If A is normal then we can write A = V DV T , where V is orthogonal and D
is block diagonal with 1× 1 blocks di and 2× 2 blocks Di (see, e.g., [13, §2.5]).
Here, di = gi σi with gi = sign(di) and σi = |di|, while

Di =
(

ai bi
−bi ai

)
= σiGi, σi =

√
a2
i + b2i Gi =

(
ci si
−si ci

)
,

i.e., the 2× 2 blocks are scaled Givens rotations with ci = ai/σi and si = bi/σi,
and thus Di = Gi Σi with Σi = diag(σi, σi).

Now collect all gi and Gi in the orthogonal block diagonal matrix G, and all
scaling factors σi and Σi in the diagonal matrix Σ. Then an SVD of A is given
by A = UΣV T with U = V G, and it follows that C = V TU = G. Therefore, for
a normal matrix A, the mixing of the SVD components is limited to a mixing of
subspaces of dimension two, and hence the Krylov subspaces for GMRES and
RRGMRES are likely to be well behaved.

6 Conclusion

MINRES and MR-II have regularization properties for the same reason as
CGLS does: by “killing” the large SVD components of the residual – in order to
reduce its norm as much as possible – they capture the desired SVD components
and produce a regularized solution. Negative eigenvalues do not inhibit the
regularizing effect of MINRES and MR-II, but they influence the convergence
rate.

GMRES and RRGMRES mix the SVD components in each iteration and thus
do not provide a filtered SVD solution. For some problems GMRES and RRGM-
RES produce regularized solutions, either because the mixing is weak (see §5.4)
or because the Krylov vectors are well suited for the problem (see §5.5). For
other problems neither GMRES nor RRGMRES produce regularized solutions,
either due to an unfavorable null space (see §5.2) or due to a severe and undesired
mixing of the SVD components (see §5.6).

Our bottom-line conclusion is that while CGLS, MINRES and MR-II have
general regularization properties, one should be very careful using GMRES and
RRGMRES as general-purpose regularization methods for practical problems.
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