2,979 research outputs found

    Applying Chemometrics to Evaluate Mine Tailings’ Potential As Partial Cement Replacement

    Get PDF
    This study investigates the utilization of mine tailings, the by-product originating from metal- and mineral-based ore mining, as a new cement replacement material. This paper is based on the chemical and physical characteristics of 13 mine tailing samples. In this study, Chemometrics were applied to consider all parameters simultaneously and obtain a thorough screening of potential relations in the large data set. Hierarchical Cluster Analysis (HCA) groups samples according to (dis)similar features and Principal Component Analysis (PCA) visualizes predominating variables and relations to samples. The application of HCA highlighted a clear grouping between mine tailings according to characteristics. Meanwhile, PCA identified the predominant chemical and physical characteristics in the mine tailing samples. Chemometrics therefore provided a thorough overview of mine tailings’ physical and chemical characteristics. Keywords: mine tailings, chemometrics, cement replacemen

    Polyphosphate Storage during Sporulation in the Gram-Negative Bacterium Acetonema longum

    Get PDF
    Using electron cryotomography, we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes high-density storage granules at the leading edges of engulfing membranes. The granules appear in the prespore and increase in size and number as engulfment proceeds. Typically, a cluster of 8 to 12 storage granules closely associates with the inner spore membrane and ultimately accounts for ∼7% of the total volume in mature spores. Energy-dispersive X-ray spectroscopy (EDX) analyses show that the granules contain high levels of phosphorus, oxygen, and magnesium and therefore are likely composed of polyphosphate (poly-P). Unlike the Gram-positive Bacilli and Clostridia, A. longum spores retain their outer spore membrane upon germination. To explore the possibility that the granules in A. longum may be involved in this unique process, we imaged purified Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Clostridium sporogenes spores. Even though B. cereus and B. thuringiensis contain the ppk and ppx genes, none of the spores from Gram-positive bacteria had granules. We speculate that poly-P in A. longum may provide either the energy or phosphate metabolites needed for outgrowth while retaining an outer membrane

    Strategies for a diversified organic pork production – an upcoming project

    Get PDF
    The objective of this project is to identify strategies for a diversified organic pork production with superior sensory quality based on pigs foraging in the cropping system. Three categories of slaughter pigs (young entire male pigs, female pigs of more than 100 kg and first parity sows) will be investigated and a traditional breed will be compared with a modern crossbred

    Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    Get PDF
    BACKGROUND: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsissubvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. RESULTS: A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large-scale pretreatment methods. The pretreatment effect was reached with only a minor total solids loss of 5 % by weight mainly caused by the fungal metabolism. The combination of the biopretreatments did not improve the methane potential of the WS, but improved the initial biogas production rate significantly. CONCLUSION: The combination of the L. buchneri ensiling and C. subvermispora WRF treatment provided a significant improvement in the pretreatment effect on WS. This combined biopretreatment produced particularly promising results for ethanol production. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0437-x) contains supplementary material, which is available to authorized users

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.

    Parallel Simulation of Probabilistic P Systems on Multicore Platforms

    Get PDF
    Ecologists need to model ecosystems to predict how they will evolve over time. Since ecosystems are non-deterministic phenomena, they must express the likelihood of events occurring, and measure the uncertainty of their models' predictions. One method well suited to these demands is Population Dynamic P systems (PDP systems, in short), which is a formal framework based on multienvironment probabilistic P systems. In this paper, we show how to parallelize a Population Dynamics P system simulator, used to model biological systems, on multi-core processors, such as the Intel i5 Nehalem and i7 Sandy Bridge. A comparison of three di erent techniques, discuss their strengths and weaknesses, and evaluate their performance on two generations of Intel processors with large memory sub-system di erences is presented. We show that P systems are memory bound computations and future performance optimization e orts should focus on memory tra c reductions. We achieve runtime gains of up to 2.5x by using all the cores of a single socket 4-core Intel i7 built on the Sandy Bridge architecture. From our analysis of these results we identify further ways to improve the runtime of our simulator.Junta de Andalucía P08-TIC04200Ministerio de Educación y Ciencia TIN2009-1319

    Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

    Get PDF
    The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood.Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control.We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells
    corecore