304 research outputs found

    Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology

    Get PDF
    植物を支える「共生ネットワーク」は地上と地下で構造が違う --見えてきた地下生物圏の構造--. 京都大学プレスリリース. 2015-10-26.In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions

    Geographic patterns in plant-pollinator mutualistic networks

    Get PDF
    . Recent reviews of plant–pollinator mutualistic networks showed that gen- eralization is a common pattern in this type of interaction. Here we examine the ecological correlates of generalization patterns in plant–pollinator networks, especially how interaction patterns covar y with latitude, elevation, and insularity. We review the few published anal- yses of whole networks and include unpublished material, analyzing 29 complete plant– pollinator networks that encompass arctic, alpine, temperate, Mediterranean, and subtrop- ical–tropical areas. The number of interactions obser ved (I) was a linear function of network size (M ) the maximum number of interactions: ln I = 0.575 + 0.61 ln M; R2 = 0.946. The connectance (C), the fraction of obser ved interactions relative to the total possible, decreased exponentially with species richness, the sum of animal and plant species in each community (A + P): C = 13.83 exp[—0.003(A + P)]. After controlling for species richness, the residual connectance was significantly lower in highland (>1500 m elevation) than in lowland networks and differed marginally among biogeographic regions, with both alpine and trop- ical networks showing a trend for lower residual connectance. The two Mediterranean networks showed the highest residual connectance. After correcting for variation in network size, plant species were shown to be more generalized at higher latitude and lowland habitats, but showed increased specialization on islands. Oceanic island networks showed an im- poverishment of potential animal pollinators (lower ratio of animal to plant species, A : P, compared to mainland networks) associated with this trend of increased specialization. Plants, but not their flower-visiting animals, supported the often-repeated statements about higher specificity in the tropics than at higher latitudes. The pattern of interaction build- up as diversity increases in pollination networks does not differ appreciably from other mutualisms, such as plant–seed disperser networks or more complex food webs.Peer reviewe

    Strong, Long-Term Temporal Dynamics of an Ecological Network

    Get PDF
    Nature is organized into complex, dynamical networks of species and their interactions, which may influence diversity and stability. However, network research is, generally, short-term and depict ecological networks as static structures only, devoid of any dynamics. This hampers our understanding of how nature responds to larger disturbances such as changes in climate. In order to remedy this we studied the long-term (12-yrs) dynamics of a flower-visitation network, consisting of flower-visiting butterflies and their nectar plants. Global network properties, i.e. numbers of species and links, as well as connectance, were temporally stable, whereas most species and links showed a strong temporal dynamics. However, species of butterflies and plants varied bimodally in their temporal persistance: Sporadic species, being present only 1–2(-5) years, and stable species, being present (9-)11–12 years, dominated the networks. Temporal persistence and linkage level of species, i.e. number of links to other species, made up two groups of species: Specialists with a highly variable temporal persistence, and temporally stable species with a highly variable linkage level. Turnover of links of specialists was driven by species turnover, whereas turnover of links among generalists took place through rewiring, i.e. by reshuffling existing interactions. However, in spite of this strong internal dynamics of species and links the network appeared overall stable. If this global stability-local instability phenomenon is general, it is a most astonishing feature of ecological networks

    Temporal development and collapse of an Arctic plant-pollinator network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The temporal dynamics and formation of plant-pollinator networks are difficult to study as it requires detailed observations of how the networks change over time. Understanding the temporal dynamics might provide insight into sustainability and robustness of the networks and how they react to environmental changes, such as global warming. Here we study an Arctic plant-pollinator network in two consecutive years using a simple mathematical model and describe the temporal dynamics (daily assembly and disassembly of links) by random mechanisms.</p> <p>Results</p> <p>We develop a mathematical model with parameters governed by the probabilities for entering, leaving and making connections in the network and demonstrate that A. The dynamics is described by very similar parameters in both years despite a strong turnover in the composition of the pollinator community and different climate conditions, B. There is a drastic change in the temporal behaviour a few days before the end of the season in both years. This change leads to the collapse of the network and does not correlate with weather parameters, C. We estimate that the number of available pollinator species is about 80 species of which 75-80% are observed in each year, D. The network does not reach an equilibrium state (as defined by our model) before the collapse set in and the season is over.</p> <p>Conclusion</p> <p>We have shown that the temporal dynamics of an Arctic plant-pollinator network can be described by a simple mathematical model and that the model allows us to draw biologically interesting conclusions. Our model makes it possible to investigate how the network topology changes with changes in parameter values and might provide means to study the effect of climate on plant-pollinator networks.</p

    Response to Comment on ‘‘Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance’’

    Get PDF
    Mutualistic networks are characterized by weak and asymmetric interactions, which a simple model predicts will facilitate species coexistence. Holland et al. propose a more complex model and argue that coexistence is independent of mutualism strength. However, we show that mutualism strength still plays an important role in their model and that it significantly decreases with species richness as predicted.Peer reviewe

    Frugivory and Seed Dispersal by Lizards: A Global Review

    Get PDF
    Birds and mammals are the only vertebrates which receive comprehensive attention in studies of dispersal of fleshy-fruited plant species. However, recently the importance of fleshy fruit in the diet of lizards (order Squamata: suborder Sauria), and their role as seed dispersers have been recognized in a number of studies, especially in studies from arthropod-poor habitats, such as oceanic islands. Here, we revisit the evidence of fruit-eating lizards on a global scale in order to test if fruit consumption is more common on islands than expected by chance. We constructed a database of 470 lizard species (from a global count of 6,515 species), that have been reported to consume fleshy fruits. This set of lizards belong to 27 families with Scincidae (N = 78 species), Gekkonidae (69), and Dactyloidae (55) having more frugivorous species than other lizard families. We found that 62.4% of these lizards inhabit islands, whereas only one third (35.3%) of all lizard species inhabit islands. These values support the presence of an “insular phenomenon,” however; we also tested if this biogeographical pattern might be driven by body size and evolutionary history of lizards. Thus, we looked for any phylogenetic signals in the distributions of lizard body size, island-presence, and frugivory and calculated phylogenetically corrected correlations among the three variables on a global subset of 2,417 lizard species for which we had detailed phylogenetic information. Both lizard body size and island-presence were weakly influenced by phylogeny; whereas, frugivory was not. In addition, we found that (1) body size and frugivory were weakly positively correlated; (2) body size and island-presence were uncorrelated; and (3) island-presence and frugivory were strongly positively correlated. Thus, we conclude that the main driver of frugivory on islands is the specific island environment and not lizard body size per se. Islands are said to be poor in arthropods and predators, and this may force/allow island lizards to forage for additional food sources, such as fleshy fruits. We also suggest that modern lizards as well as their ancestors may potentially play an important role to many plants as seed dispersers. However, we do not known how tight the correlation is between frugivory and seed dispersal. Thus, lizards repeatedly inspire us to ask new ecological and evolutionary questions

    Extreme reproduction and survival of a true cliffhanger : the endangered plant Borderea chouardii (Dioscoreaceae)

    Get PDF
    Cliff sides are extreme habitats, often sheltering a rich and unique flora. One example is the dioecious herb Borderea chouardii (Dioscoreaceae), which is a Tertiary, tropical relict, occurring only on two adjacent vertical cliffs in the world. We studied its reproductive biology, which in some aspects is extreme, especially the unusual double mutualistic role of ants as both pollinators and dispersers. We made a 2-year pollination census and four years of seed-dispersal experiments, recording flower visitors and dispersal rates. Fruit and seed set, self-sowing of seeds, seedling recruitment, and fate of seedlings from seeds sowed by different agents were scored over a period of 17 years. The ants Lasius grandis and L. cinereus were the main pollinators, whereas another ant Pheidole pallidula dispersed seeds. Thus ants functioned as double mutualists. Two thirds of all new seedlings came from self-sown seeds, and 1/3 was dispersed by ants, which gathered the seeds with their oil-rich elaiosome. Gravity played a minor role to dispersal. Both ant dispersal and self-sowing resulted in the same survival rate of seedlings. A double mutualism is a risky reproductive strategy, but B. chouardii buffers that by an unusual long-term demographic stability (some individuals exceed 300 years in lifespan) and its presence in a climatically very stable habitat, inaccessible to large herbivores. Such a combination of traits and habitat properties may explain the persistence of this relict species

    Impact of Alien Plant Invaders on Pollination Networks in Two Archipelagos

    Get PDF
    Mutualistic interactions between plants and animals promote integration of invasive species into native communities. In turn, the integrated invaders may alter existing patterns of mutualistic interactions. Here we simultaneously map in detail effects of invaders on parameters describing the topology of both plant-pollinator (bi-modal) and plant-plant (uni-modal) networks. We focus on the invader Opuntia spp., a cosmopolitan alien cactus. We compare two island systems: Tenerife (Canary Islands) and Menorca (Balearic Islands). Opuntia was found to modify the number of links between plants and pollinators, and was integrated into the new communities via the most generalist pollinators, but did not affect the general network pattern. The plant uni-modal networks showed disassortative linkage, i.e. species with many links tended to connect to species with few links. Thus, by linking to generalist natives, Opuntia remained peripheral to network topology, and this is probably why native network properties were not affected at least in one of the islands. We conclude that the network analytical approach is indeed a valuable tool to evaluate the effect of invaders on native communities

    Impact of Alien Plant Invaders on Pollination Networks in Two Archipelagos

    Get PDF
    Mutualistic interactions between plants and animals promote integration of invasive species into native communities. In turn, the integrated invaders may alter existing patterns of mutualistic interactions. Here we simultaneously map in detail effects of invaders on parameters describing the topology of both plant-pollinator (bi-modal) and plant-plant (uni-modal) networks. We focus on the invader Opuntia spp., a cosmopolitan alien cactus. We compare two island systems: Tenerife (Canary Islands) and Menorca (Balearic Islands). Opuntia was found to modify the number of links between plants and pollinators, and was integrated into the new communities via the most generalist pollinators, but did not affect the general network pattern. The plant uni-modal networks showed disassortative linkage, i.e. species with many links tended to connect to species with few links. Thus, by linking to generalist natives, Opuntia remained peripheral to network topology, and this is probably why native network properties were not affected at least in one of the islands. We conclude that the network analytical approach is indeed a valuable tool to evaluate the effect of invaders on native communities
    corecore