99 research outputs found

    Gene-Environment Interaction in the Onset of Eczema in Infancy: Filaggrin Loss-of-Function Mutations Enhanced by Neonatal Cat Exposure

    Get PDF
    Background Loss-of-function variants in the gene encoding filaggrin (FLG) are major determinants of eczema. We hypothesized that weakening of the physical barrier in FLG-deficient individuals may potentiate the effect of environmental exposures. Therefore, we investigated whether there is an interaction between FLG loss-of-function mutations with environmental exposures (pets and dust mites) in relation to the development of eczema. Methods and Findings We used data obtained in early life in a high-risk birth cohort in Denmark and replicated the findings in an unselected birth cohort in the United Kingdom. Primary outcome was age of onset of eczema; environmental exposures included pet ownership and mite and pet allergen levels. In Copenhagen(n = 379), FLG mutation increased the risk of eczema during the first year of life (hazard ratio [HR] 2.26, 95% confidence interval [CI] 1.27–4.00, p = 0.005), with a further increase in risk related to cat exposure at birth amongst children with FLG mutation (HR 11.11, 95% CI 3.79–32.60, p < 0.0001); dog exposure was moderately protective (HR 0.49, 95% CI 0.24–1.01, p = 0.05), but not related to FLG genotype. In Manchester (n = 503) an independent and significant association of the development of eczema by age 12 mo with FLG genotype was confirmed (HR 1.95, 95% CI 1.13–3.36, p = 0.02). In addition, the risk increased because of the interaction of cat ownership at birth and FLG genotype (HR 3.82, 95% CI 1.35–10.81, p = 0.01), with no significant effect of the interaction with dog ownership (HR 0.59, 95% CI 0.16–2.20, p = 0.43). Mite-allergen had no effects in either cohort. The observed effects were independent of sensitisation. Conclusions We have demonstrated a significant interaction between FLG loss-of-function main mutations (501x and 2282del4) and cat ownership at birth on the development of early-life eczema in two independent birth cohorts. Our data suggest that cat but not dog ownership substantially increases the risk of eczema within the first year of life in children with FLG loss-of-function variants, but not amongst those without. FLG-deficient individuals may need to avoid cats but not dogs in early life

    A genome-wide association study of early menopause and the combined impact of identified variants

    Get PDF
    Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smokin

    Determining the contribution of IL33 and IL1RL1 polymorphisms to clinical and immunological features of asthma

    Get PDF
    Rationale: IL33 (9p24.1) and the IL33 receptor (IL1RL, 2q12) have been reproducibly identified as asthma susceptibility genes. However, the variants driving genetic associations are not yet fully defined. Using a population based birth cohort of 1059 children (Manchester Asthma and Allergy Study-(MAAS)) and 2536 adults with asthma (Genetics of Asthma Severity and Phenotypes- (GASP)) cohort we aimed to define genetic variants associated with clinical and immunological features of asthma. Methods: MAAS samples were genotyped using the Illumina 610 Quad array and imputed using 1000G reference panel. GASP samples were genotyped using two custom designed Affymetrix arrays (UK BiLEVE/UK Biobank array). Datasets were quality controlled for gender mismatches, outliers and relatedness. Data was generated for the IL33/IL1RL1 regions consisting of the genes and surrounding regions (chr9:5715785−6757983 & chr2:102427961−103468497) on the following traits: asthma diagnosis (MAAS), atopy, FEV1 (GASP) and FEV1/FVC (MAAS and GASP) as well as total blood eosinophil counts and serum total IgE levels (GASP). Variables for blood eosinophils and total IgE were log10 transformed. Analysis was carried out in PLINK using linear or logistic regression modelling including appropriate covariates for each trait. Results: In the MAAS cohort, we replicated the association of the IL33 locus with asthma diagnosis, identifying potentially two independent novel signals in that locus (rs10975398; P=1.70E-05; B= -1.519; MAF=0.32 and rs2890697; P=1.10E-04; B= -1.573; MAF=0.43). This association survived a Bonferroni correction for multiple testing. Although not surviving correction, an association was also identified for atopy in the IL1RL1 locus for MAAS (P=1.08E-04; MAF=0.48). In GASP we identified modest associations not in known LD with published loci (P-value range: 5.00E-02 – 7.60E-04) for FEV1, FEV1/FVC, atopy, blood eosinophils and total IgE in both the IL33 and IL1RL1 loci. Multiple SNPs presented nominal association (P<0.01) with more than one trait such as atopy & total IgE, providing supporting evidence for association. Conclusion: We replicated the association of IL33 region SNPs with asthma diagnosis in MAAS, highlighting the role of this locus in childhood asthma. Although trait association signals did not survive correction for multiple testing, nominal association across multiple phenotypes in GASP provides suggestive evidence of the role of the IL33/IL1RL1 genetic polymorphisms in determining clinical and immunological features of asthma

    A genome wide association study of moderate-severe asthma in subjects from the United Kingdom

    Get PDF
    Rationale: Genome wide association studies (GWAS) in asthma have been successful in identifying disease susceptibility genes, however to date these have focused on mild disease. The genetic risk factors for moderate-severe asthma remain unclear. Aim: To identify common genetic variants affecting susceptibility to develop moderate-severe asthma. Methods: We identified asthma cases and controls from UK Biobank and additional cases from the Genetics of Asthma Severity & Phenotypes (GASP) cohort. A genome-wide association study was undertaken in 5,135 European ancestry individuals with moderate-severe asthma based on British Thoracic Society criteria 3 or above and 25,675 controls free from lung disease, allergic rhinitis and atopic dermatitis. After imputation (UK10K + 1000 genomes Phase 3) and standard quality control measures, the association of 33,771,858 single nucleotide polymorphisms (SNPs) were tested. A logistic model of association of asthma status with imputed genotype dose was fitted using SNPTEST adjusted for ancestry principal components. Results: We identified 22 loci showing association (P < 5 × 10(-8)) including novel signals in or near D2HGDH, STAT6, HLA-B, CD247, GATA3, PDCD1LG2, ZNF652, RPAP3, MUC5AC and BACH2. Previously described asthma loci where replicated including signals in or near HLA-DQB1, TSLP, IL1RL1/IL18R1, CLEC16A, GATA3, IL33, SMAD3, SLC22A5/IL13, C11orf30, ZBTB10, IKZF3-ORMDL3 and IKZF4. Conclusion: The largest genome-wide association study of moderate-severe asthma to date was carried out and multiple novel loci where identified. These findings may provide new insight into the molecular mechanisms underlying this difficult to treat population

    Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”

    Get PDF
    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus
    corecore