490 research outputs found

    Feel My Pain: Design and Evaluation of Painpad, a Tangible Device for Supporting Inpatient Self-Logging of Pain

    Get PDF
    Monitoring patients' pain is a critical issue for clinical caregivers, particularly among staff responsible for providing analgesic relief. However, collecting regularly scheduled pain readings from patients can be difficult and time-consuming for clinicians. In this paper we present Painpad, a tangible device that was developed to allow patients to engage in self-logging of their pain. We report findings from two hospital-based field studies in which Painpad was deployed to a total of 78 inpatients recovering from ambulatory surgery. We find that Painpad results in improved frequency and compliance with pain logging, and that self-logged scores may be more faithful to patients' experienced pain than corresponding scores reported to nurses. We also show that older adults may prefer tangible interfaces over tablet-based alternatives for reporting their pain, and we contribute design lessons for pain logging devices intended for use in hospital settings

    Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Get PDF
    The authors thank the Education Spanish Ministry for the grant provided for the first author under the "Ayudas para la movilidad postdoctoral en centros extranjeros'' scheme. The James Hutton Institute receives funding from the Scottish Government.Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).Publisher PDFPeer reviewe

    WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles

    Get PDF
    The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1–1 and W1–7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1–1 and W1–7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1–1 and W1–7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development

    Predictors of the timing of initiation of antenatal care in an ethnically diverse urban cohort in the UK

    Get PDF
    Background: In the UK, women are recommended to engage with maternity services and establish a plan of care prior to the 12th completed week of pregnancy. The aim of this study was to identify predictors for late initiation of antenatal care within an ethnically diverse cohort in East London. Methods: Cross-sectional analysis of routinely collected electronic patient record data from Newham University Hospital NHS Trust (NUHT). All women who attended their antenatal booking appointment within NUHT between 1st January 2008 and 24th January 2011 were included in this study. The main outcome measure was late antenatal booking, defined as attendance at the antenatal booking appointment after 12 weeks (+6 days) gestation. Data were analysed using multivariable logistic regression with robust standard errors. Results: Late initiation of antenatal care was independently associated with non-British (White) ethnicity, inability to speak English, and non-UK maternal birthplace in the multivariable model. However, among those women who both spoke English and were born in the UK, the only ethnic group at increased risk of late booking were women who identified as African/Caribbean (aOR: 1.40: 95% CI: 1.11, 1.76) relative to British (White). Other predictors identified include maternal age younger than 20 years (aOR: 1.32; 95% CI: 1.13-1.54), high parity (aOR: 2.09; 95% CI: 1.77-2.46) and living in temporary accommodation (aOR: 1.71; 95% CI: 1.35-2.16). Conclusions: Socio-cultural factors in addition to poor English ability or assimilation may play an important role in determining early initiation of antenatal care. Future research should focus on effective interventions to encourage and enable these minority groups to engage with the maternity services

    Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-level second generation sequencing (2GS) technologies are now being applied to non-model species as a viable and favourable alternative to Sanger sequencing. Large-scale SNP discovery was undertaken in blackcurrant (<it>Ribes nigrum </it>L.) using transcriptome-based 2GS 454 sequencing on the parental genotypes of a reference mapping population, to generate large numbers of novel markers for the construction of a high-density linkage map.</p> <p>Results</p> <p>Over 700,000 reads were produced, from which a total of 7,000 SNPs were found. A subset of polymorphic SNPs was selected to develop a 384-SNP OPA assay using the Illumina BeadXpress platform. Additionally, the data enabled identification of 3,000 novel EST-SSRs. The selected SNPs and SSRs were validated across diverse <it>Ribes </it>germplasm, including mapping populations and other selected <it>Ribes </it>species.</p> <p>SNP-based maps were developed from two blackcurrant mapping populations, incorporating 48% and 27% of assayed SNPs respectively. A relatively high proportion of visually monomorphic SNPs were investigated further by quantitative trait mapping of theta score outputs from BeadStudio analysis, and this enabled additional SNPs to be placed on the two maps.</p> <p>Conclusions</p> <p>The use of 2GS technology for the development of markers is superior to previously described methods, in both numbers of markers and biological informativeness of those markers. Whilst the numbers of reads and assembled contigs were comparable to similar sized studies of other non-model species, here a high proportion of novel genes were discovered across a wide range of putative function and localisation. The potential utility of markers developed using the 2GS approach in downstream breeding applications is discussed.</p

    Predictors of the timing of initiation of antenatal care in an ethnically diverse urban cohort

    Get PDF
    Abstract Background: In the UK, women are recommended to engage with maternity services and establish a plan of care prior to the 12th completed week of pregnancy. The aim of this study was to identify predictors for late initiation of antenatal care within an ethnically diverse cohort in East London

    Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes

    Get PDF
    Potato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars

    The dynamics of transcript abundance during cellularization of developing barley endosperm

    Get PDF
    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development.Runxuan Zhang, Matthew R. Tucker, Rachel A Burton, Neil J. Shirley, Alan Little, Jenny Morris, Linda Milne, Kelly Houston, Pete E. Hedley, Robbie Waugh, and Geoffrey B. Finche
    corecore