11,425 research outputs found

    A comparative study of game theoretic and evolutionary models for software agents

    No full text
    Most of the existing work in the study of bargaining behaviour uses techniques from game theory. Game theoretic models for bargaining assume that players are perfectly rational and that this rationality in common knowledge. However, the perfect rationality assumption does not hold for real-life bargaining scenarios with humans as players, since results from experimental economics show that humans find their way to the best strategy through trial and error, and not typically by means of rational deliberation. Such players are said to be boundedly rational. In playing a game against an opponent with bounded rationality, the most effective strategy of a player is not the equilibrium strategy but the one that is the best reply to the opponent's strategy. The evolutionary model provides a means for studying the bargaining behaviour of boundedly rational players. This paper provides a comprehensive comparison of the game theoretic and evolutionary approaches to bargaining by examining their assumptions, goals, and limitations. We then study the implications of these differences from the perspective of the software agent developer

    An anytime approximation method for the inverse Shapley value problem

    No full text
    Coalition formation is the process of bringing together two or more agents so as to achieve goals that individuals on their own cannot, or to achieve them more efficiently. Typically, in such situations, the agents have conflicting preferences over the set of possible joint goals. Thus, before the agents realize the benefits of cooperation, they must find a way of resolving these conflicts and reaching a consensus. In this context, cooperative game theory offers the voting game as a mechanism for agents to reach a consensus. It also offers the Shapley value as a way of measuring the influence or power a player has in determining the outcome of a voting game. Given this, the designer of a voting game wants to construct a game such that a players Shapley value is equal to some desired value. This is called the inverse Shapley value problem. Solving this problem is necessary, for instance, to ensure fairness in the players voting powers. However, from a computational perspective, finding a players Shapley value for a given game is #p-complete. Consequently, the problem of verifying that a voting game does indeed yield the required powers to the agents is also #P-complete. Therefore, in order to overcome this problem we present a computationally efficient approximation algorithm for solving the inverse problem. This method is based on the technique of successive approximations; it starts with some initial approximate solution and iteratively updates it such that after each iteration, the approximate gets closer to the required solution. This is an anytime algorithm and has time complexity polynomial in the number of players. We also analyze the performance of this method in terms of its approximation error and the rate of convergence of an initial solution to the required one. Specifically, we show that the former decreases after each iteration, and that the latter increases with the number of players and also with the initial approximation error. Copyright © 2008, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaarnas.org). All rights reserved

    Taking Account of Non-Timber Values in Harvest Decisions in the Southern Forest of Tasmania

    Get PDF
    This paper examines the optimal use of a site containing standing timber, taking account of both timber and non-timber values. It discusses the range of non-timber values yielded by a typical site in the southern forest of Tasmania. Taking that site for illustrative purposes, it calculates the relationships between age of stand, extent of timber and non-timber values, and optimal cutting age, using a spreadsheet model. It finds that for a stand with moderate potential environmental benefits there is a period of its life during which it is optimal to log. This segment narrows, and eventually disappears, as potential environmental benefits increase.

    On the Identification of Agents in the Design of Production Control Systems

    No full text
    This paper describes a methodology that is being developed for designing and building agent-based systems for the domain of production control. In particular, this paper deals with the steps that are involved in identifying the agents and in specifying their responsibilities. The methodology aims to be usable by engineers who have a background in production control but who have no prior experience in agent technology. For this reason, the methodology needs to be very prescriptive with respect to the agent-related aspects of design

    How BAO measurements can fail to detect quintessence

    Full text link
    We model the nonlinear growth of cosmic structure in different dark energy models, using large volume N-body simulations. We consider a range of quintessence models which feature both rapidly and slowly varying dark energy equations of state, and compare the growth of structure to that in a universe with a cosmological constant. The adoption of a quintessence model changes the expansion history of the universe, the form of the linear theory power spectrum and can alter key observables, such as the horizon scale and the distance to last scattering. The difference in structure formation can be explained to first order by the difference in growth factor at a given epoch; this scaling also accounts for the nonlinear growth at the 15% level. We find that quintessence models which feature late (z<2)(z<2), rapid transitions towards w=1w=-1 in the equation of state, can have identical baryonic acoustic oscillation (BAO) peak positions to those in Λ\LambdaCDM, despite being very different from Λ\LambdaCDM both today and at high redshifts (z1000)(z \sim 1000). We find that a second class of models which feature non-negligible amounts of dark energy at early times cannot be distinguished from Λ\LambdaCDM using measurements of the mass function or the BAO. These results highlight the need to accurately model quintessence dark energy in N-body simulations when testing cosmological probes of dynamical dark energy.Comment: 10 pages, 7 figures, to appear in the Invisible Univers International Conference AIP proceedings serie

    Viable 3C-SiC-on-Si MOSFET design disrupting current Material Technology Limitations

    Get PDF
    The cubic polytype (3C-) of Silicon Carbide (SiC) is an emerging semiconductor technology for power devices. The featured isotropic material properties along with the Wide Band Gap (WBG) characteristics make it an excellent choice for power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Nonetheless, material related limitations originate from the advantageous fact that 3C-SiC can be grown on Silicon (Si) wafers. One of these major limitations is an almost negligible activation of the p-type dopants after ion implantation because the annealing has to take place at relatively low temperatures. In this paper, a novel process flow for a vertical 3C-SiC-on-Si MOSFET is presented to overcome the difficulties that currently exist in obtaining a p-body region through implantation. The proposed design has been accurately simulated with Technology Computer Aided Design (TCAD) process and device software and a comparison is performed with the conventional SiC MOSFET design. The simulated output characteristics demonstrated a reduced on-resistance and at the same time it is shown that the blocking capability can be maintained to the same level. The promising performance of the novel design discussed in this paper is potentially the solution needed and a huge step towards the realisation of 3C-SiC-on-Si MOSFETs with commercially grated characteristics

    Modelling the relative velocities of isolated pairs of galaxies

    Full text link
    We study the comoving relative velocities, v12, of model isolated galaxy pairs at z=0.5. For this purpose, we use the predictions from the GALFORM semi-analytical model of galaxy formation and evolution based on a Lambda cold dark matter cosmology consistent with the results from WMAP7. In real space, we find that isolated pairs of galaxies are predicted to form an angle t with the line-of-sight that is uniformily distributed as expected if the Universe is homogeneous and isotropic. We also find that isolated pairs of galaxies separated by a comoving distance between 1 and 3 Mpc/h are predicted to have =0. For galaxies in this regime, the distribution of the angle t is predicted to change minimally from real to redshift space, with a change smaller than 5% in . However, the distances defining the comoving regime strongly depends on the applied isolation criteria.Comment: 4 pages, 4 figures, SF2A 2013 Proceedin

    Taking Account of Non-Timber Values in Harvest Decisions in the Southern Forest of Tasmania

    Get PDF
    This paper examines the optimal use of a site containing standing timber, taking account of both timber and non-timber values. It discusses the range of non-timber values yielded by a typical site in the southern forest of Tasmania. Taking that site for illustrative purposes, it calculates the relationships between age of stand, extent of timber and non-timber values, and optimal cutting age, using a spreadsheet model. It finds that for a stand with moderate potential environmental benefits there is a period of its life during which it is optimal to log. This segment narrows, and eventually disappears, as potential environmental benefits increase
    corecore