228 research outputs found

    Audit incorporating avoidability and appropriate intervention can significantly decrease perinatal mortality

    Get PDF
    Objective. To evaluate the role of the ICA (Identification, Cause, Avoidable factor) Solution method of perinatal audit in reducing perinatal mortality.Design. Retrospective audit of 1 060 perinatal deaths between 1 January 1991 and 31 December 1992.Setting. Livingstone Hospital Maternity Service.Subjects. One thousand and sixty perinatal deaths, where the gestational age exceeded 28 weeks or, when gestational age was unknown, the birth weight was equal to or exceeded 1 000 g.Main outcome measures. All perinatal deaths were identified and classified by primary obstetric cause for perinatal loss. In the second year of the study avoidable factors were sought and, if found, graded and categorised.Results. The major primary obstetric causes of perinatal loss identified and amenable to intervention were intrapartum trauma, intrapartum asphyxia and infection. In the second year of study potentially avoidable factors were sought and identified in almost 50% of perinatal deaths. Appropriate intervention lowered the perinatal mortality rate by 23% (P < 0,05; odds ratio 0,76; 95% confidence interval 0,67 - 0,86).Conclusion. The ICA Solution method of perinatal audit identified problems in overall obstetric care, facilitating a significant fall in perinatal mortality

    Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids

    Get PDF
    AbstractEvidence is presented, by means of both fluorescence and action spectroscopy, that a small, spectroscopically heterogeneous population of both Chl a and Chl b molecules is present in isolated spinach thylakoids and is active in photoinhibition. The broadness of the action spectrum suggests that degraded or incompletely assembled pigment–protein complexes may be involved

    On phytochrome absorption and the phytochrome photoequilibrium in a green leaf: environmental sensitivity and photoequilibrium time

    Get PDF
    The average, corrected attenuance spectra for both spectral forms of phytochrome in a mature leaf were calculated. Optical masking by chlorophyll together with the detour effect (optical path lengthening effect) due to multiple light scattering led to large changes in both the Qy band shape and wavelength position and the effective intensity of the weak vibrational bands increases. The Pfr/Pr oscillator-strength-ratio between 400-750 nm (0.93 in vitro), becomes 1.63 in a leaf. Thus the dominant absorption form is Pfr. These two values permit calculation of the phytochrome photoequilibrium under conditions of daylight illumination both in vitro and in folia. These values are 0.6 and 0.38 respectively. Previous literature estimates for the situation in vitro, based on the 660/730 nm absorption ratio, yielded values close to 0.6. It is demonstrated that this large decrease in the phytochrome photoequilibrium in a leaf has the effect of translating this parameter to a position on the dose (red/far-red light ratio)-response (Pfr/Ptot) plot towards greater sensitivity to changes in the environmental red/far-red ratio. The increased sensitivity factor is almost five-fold for the daylight environment and is even greater for the various shade-light environments. The approximate time taken to attain photoequilibrium (1/e lifetime) has also been calculated for phytochrome in a leaf in different light environments. For the daylight environment the photoequilibration time is 5 s, which increases into the 20-80 s interval under different degrees of shade light. Thus, despite the strong optical masking by chlorophyll in a mature leaf, the phytochrome photoequilibrium is attained quite rapidly on a physiological time scale

    Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations

    Get PDF
    By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi approaches to Relativistic Mean Field Theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface and Coulomb terms, is examined by comparing it with self-consistent results of the finite nuclei incompressibility for some currently used non-linear sigma-omega parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten

    Determinants of disease penetrance in PRPF31-associated retinopathy

    Get PDF
    Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites

    Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis

    Get PDF
    corecore