83 research outputs found

    Correcting tree-ring δ13C time series for tree-size effects in eight temperate tree species

    Get PDF
    Stable carbon isotope ratios (δ13C) in tree rings have been widely used to study changes in intrinsic water-use efficiency (iWUE), sometimes with limited consideration of how C-isotope discrimination is affected by tree height and canopy position. Our goals were to quantify the relationships between tree size or tree microenvironment and wood δ13C for eight functionally diverse temperate tree species in northern New England, and to better understand the physical and physiological mechanisms underlying these differences. We collected short increment cores in closed-canopy stands and analyzed δ13C in the most recent 5 years of growth. We also sampled saplings in both shaded and sun-exposed environments. In closed-canopy stands, we found strong tree-size effects on δ13C, with 3.7 – 7.2‰ of difference explained by linear regression vs. height (0.11 – 0.28‰ m-1), which in some cases is substantially stronger than the effect reported in previous studies. However, open-grown saplings were often isotopically more similar to large codominant trees than to shade-grown saplings, indicating that light exposure contributes more to the physiological and isotopic differences between small and large trees than does height. We found that in closed-canopy forests, δ13C correlations with DBH were nonlinear but also strong, allowing a straightforward procedure to correct tree- or stand-scale δ13C-based iWUE chronologies for changing tree size. We demonstrate how to use such data to correct and interpret multi-decadal composite isotope chronologies in both shade-regenerated and open-grown tree cohorts, and we highlight the importance of understanding site history when interpreting δ13C time series

    Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally-occurring severe droughts

    Get PDF
    Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth, and intrinsic water use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (P. strobus) declined abruptly at a soil moisture threshold of 0.15 m3m-3 , while oak’s (Q. rubra and Q. velutina) threshold was 0.11 m3m-3 — a finding consistent with pine’s more isohydric strategy. Nevertheless, once oaks’ moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well-adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine than for oaks (50% vs. 18% respectively). Despite relatively high precipitation in 2017, the oaks’ growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species’ contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought

    Influence of forest-to-silvopasture conversion and drought on components of evapotranspiration

    Get PDF
    The northeastern U.S. is projected to experience more frequent short-term (1-2 month) droughts interspersed among larger precipitation events. Agroforestry practices such as silvopasture may mitigate these impacts of climate change while maintaining economic benefits of both agricultural and forestry practices. This study evaluated the effects of forest-to-silvopasture (i.e., 50% thinning) conversion on the components of evapotranspiration (transpiration, rainfall interception, and soil evaporation) during the growing season of 2016. The study coincided with a late-summer drought throughout the northeastern U.S., which allowed us to also evaluate the effects of forest-to-silvopasture conversion on drought responses of multiple tree species, including Pinus strobus, Tsuga canadensis, and Quercus rubra. In the reference forest and silvopasture, we observed declining soil moisture and tree water use during the drought for all three tree species. However, the decline in P. strobus water use in response to declining soil moisture in the silvopasture was not as steep as compared with the reference forest, resulting in greater water use in the silvopasture for this species. In contrast, we did not detect different water-use responses between forest and silvopasture in T. canadensis or Q. rubra. This suggests that forest-to-silvopasture conversion via thinning can alleviate drought stress for P. strobus and that this species may be more sensitive to moisture stress when competition for water is high in denser stands. Evapotranspiration was 35% lower in the silvopasture compared with the reference forest, primarily a result of lower transpiration and rainfall interception. While soil evaporation was greater in the silvopasture, this was not enough to offset the considerably lower transpiration and interception. We observed greater radial tree growth 1-3 years following conversion in the silvopasture as compared with the reference forest for T. canadensis and Q. rubra, but not for P. strobus. Overall, our results suggest that forest conversion to silvopasture (in lieu of clearcutting for new pasture) may mitigate the impacts of agricultural land use intensification and climate change on ecosystem services, especially in terms of sustaining hydrologic regulation functions. Further study is required to determine the generality of these results and whether these benefits extend beyond the first few years post-conversion

    Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission

    Get PDF
    A commonly occurring polymorphic variant of the human 5-hydroxytryptamine (5-HT) transporter (5-HTT) gene that increases 5-HTT expression has been associated with reduced anxiety levels in human volunteer and patient populations. However, it is not known whether this linkage between genotype and anxiety relates to variation in 5-HTT expression and consequent changes in 5-HT transmission. Here we test this hypothesis by measuring the neurochemical and behavioral characteristics of a mouse genetically engineered to overexpress the 5-HTT. Transgenic mice overexpressing the human 5-HTT (h5-HTT) were produced from a 500 kb yeast artificial chromosome construct. These transgenic mice showed the presence of h5-HTT mRNA in the midbrain raphe nuclei, as well as a twofold to threefold increase in 5-HTT binding sites in the raphe nuclei and a range of forebrain regions. The transgenic mice had reduced regional brain whole-tissue levels of 5-HT and, in microdialysis experiments, decreased brain extracellular 5-HT, which reversed on administration of the 5-HTT inhibitor paroxetine. Compared with wild-type mice, the transgenic mice exhibited a low-anxiety phenotype in plus maze and hyponeophagia tests. Furthermore, in the plus maze test, the low-anxiety phenotype of the transgenic mice was reversed by acute administration of paroxetine, suggesting a direct link between the behavior, 5-HTT overexpression, and low extracellular 5-HT. In toto, these findings demonstrate that associations between increased 5-HTT expression and anxiety can be modeled in mice and may be specifically mediated by decreases in 5-HT transmission

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9Âą5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors

    Get PDF
    Optimally orchestrating complex behavioral states such as the pursuit and consumption of food is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, while genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH) and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice, to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level

    Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors

    Get PDF
    Optimally orchestrating complex behavioral states such as the pursuit and consumption of food is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, while genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH) and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice, to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level

    Pedagogy and deliberative democracy: Insights from recent experiments in the United Kingdom

    Get PDF
    A growing body of research suggests the existence of a disconnection between citizens, politicians and representative politics in advanced industrial democracies. This has led to a literature on the emergence of post-democratic or post-representative politics that connects to a parallel seam of scholarship on the capacity of deliberative democratic innovations to ‘close the gap’. This latter body of work has delivered major insights in terms of democratic design in ways that traverse ‘politics as theory’ and ‘politics as practice’. And yet the main argument of this article is that this seam of scholarship has generally failed to explore the existence of numerous pedagogical relationships that exist within the very fibre of deliberative processes. As such, the core contribution of this article focuses around the explication of a ‘pedagogical pyramid’ that applies a micro-political lens to deliberative processes. This theoretical contribution is empirically assessed with reference to a recent project that sought to test different citizen assembly pilots around plans for English regional devolution. The proposition being tested is that a better understanding of relational pedagogy within innovations is vital, not just to increase levels of knowledge, but also to build the capacity, confidence and contribution of democratically active citizens

    Emergence of a Novel Avian Pox Disease in British Tit Species

    Get PDF
    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006–2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia

    Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.

    Get PDF
    Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately ÂŁ60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries
    • …
    corecore