434 research outputs found

    The Public Resource Management Game

    Get PDF
    Use of public resources for private economic gain is a longstanding, contested political issue. Public resources generate benefits beyond commodity uses, including recreation, environmental and ecological conservation and preservation, and existence and aesthetic values. We analyze this problem using a dynamic resource use game. Low use fees let commodity users capture more of the marginal benefit from private use. This increases the incentive to comply with government regulations. Optimal contracts therefore include public use fees that are lower than private rates. The optimal policy also includes random monitoring to prevent strategic learning and cheating on the use agreements and to avoid wasteful efforts to disguise noncompliant behavior. An optimal policy also includes a penalty for cheating beyond terminating the use contract. This penalty must be large enough that the commodity user who would gain the most from noncompliance experiences a negative expected net return.Renewable resources, public resources policy, optimal contracts

    Modeling Oxygen Uptake during V1 Treadmill Roller Skiing

    Get PDF
    The use of regression equations to predict oxygen uptake in relation to speed, grade, power output, and anthropometric characteristics is common in cardiac rehabilitation and athlete fitness testing. Research has suggested that sport specific testing improves the reliability of the test methodology and is appropriate for the development of effective training programs. This study focused on the development of a cross-country skiing specific predictor of maximal oxygen uptake based on treadmill speed, treadmill grade, gender, and body mass. This project simulated snow skiing on a large research treadmill using roller skis. A small sample size (N = 34) warranted the use of bootstrapping techniques and multiple regression analysis to develop a cross-country skiing specific model of oxygen uptake. The stability of each bootstrapped sample was confirmed via a cross-validation procedure. The equation of best resolve was: VO2 = -4.534 + 0.223(G) + 0.061(BM) + 0.139(TG) + 0.016(TS) in which G = Gender, BM = Body Mass, TG = Treadmill Grade, TS = Treadmill Speed. The resultant model can be used to design training programs, develop athlete fitness testing or research protocols, and to predict maximal oxygen uptake when sophisticated metabolic measurement equipment is unavailable

    Forearm EMG During Rock Climbing Differs from EMG During Handgrip Dynamometry

    Get PDF
    Grip force, as measured via handgrip dynamometry, is often given importance in the study of rock climbing performance. Whether handgrip dynamometry produces a degree of muscle activation comparable to actual climbing has not been reported. Furthermore, the degree and variability of muscle activation for various configurations during climbing are unknown. The purpose of this study was to record forearm EMG responses for six hand configurations during climbing and to compare these responses to a maximum handgrip test. Five experienced climbers signed informed consent to participate in the study. Subjects performed four moves up (UP) and down (DN) on an overhanging 45-deg. climbing wall with each of six hand configurations: crimp (C), pinch (P), three 2-finger combinations (2F1, 2F2, 2F3) and an open-hand grip (O). Forearm EMG was recorded via surface electrodes. Data were recorded for the second UP and second DN moves. Prior to climbing, maximum handgrip force (HG) and simultaneous EMG were obtained. Mean HG force was 526.6±33.3 N. Times to complete the climbing movements with each hand configuration varied between 3.1±0.5 and 4.8±0.9 sec, however no significant differences were found. All peak EMG’s during climbing were higher than HG EMG (p\u3c.05). Mean EMG amplitudes for UP, expressed as percentages of HG EMG, were 198±55, 169±22, 222±72, 181±39, 126±32, and 143±47% for C, P, 2F1, 2F2, 2F3, and O respectively. Significant differences were found for O versus 2F1 and for 2F3 versus 2F1 and C (p\u3c.05). All EMG amplitudes were lower for DN than UP (p\u3c.05). Since all climbing EMGs exceeded HG EMG, it was concluded that handgrip dynamometry lacks specificity to actual rock climbing

    Homeostatic control of stearoyl desaturase expression via patched-like receptor PTR-23 ensures the survival of C. elegans during heat stress

    Get PDF
    Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm’s cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.<br/

    Feasibility, Safety, and Compliance in a Randomized Controlled Trial of Physical Therapy for Parkinson's Disease

    Get PDF
    Both efficacy and clinical feasibility deserve consideration in translation of research outcomes. This study evaluated the feasibility of rehabilitation programs within the context of a large randomized controlled trial of physical therapy. Ambulant participants with Parkinson's disease (PD) (n = 210) were randomized into three groups: (1) progressive strength training (PST); (2) movement strategy training (MST); or (3) control (“life skills”). PST and MST included fall prevention education. Feasibility was evaluated in terms of safety, retention, adherence, and compliance measures. Time to first fall during the intervention phase did not differ across groups, and adverse effects were minimal. Retention was high; only eight participants withdrew during or after the intervention phase. Strong adherence (attendance >80%) did not differ between groups (P = .435). Compliance in the therapy groups was high. All three programs proved feasible, suggesting they may be safely implemented for people with PD in community-based clinical practice

    The effect of hypothermia on influx of leukocytes in the digital lamellae of horses with oligofructose-induced laminitis

    Get PDF
    Sepsis-related laminitis (SRL) is a common complication in the septic/endotoxemic critically-ill equine patient, in which lamellar injury and failure commonly lead to crippling distal displacement of the distal phalanx. Similar to organ injury in human sepsis, lamellar injury in SRL has been associated with inflammatory events, including the influx of leukocytes into the lamellar tissue and markedly increased expression of a wide array of inflammatory mediators at the onset of Obel grade 1 (OG1) laminitis. The only treatment reported both clinically and experimentally to protect the lamellae in SRL, local hypothermia (“cryotherapy”), has been demonstrated to effectively inhibit lamellar expression of multiple inflammatory mediators when initiated at the time of administration of a carbohydrate overload in experimental models of SRL. However, the effect of hypothermia on leukocyte influx into affected tissue has not been assessed. We hypothesized that cryotherapy inhibits leukocyte emigration into the digital lamellae in SRL. Immunohistochemical staining using leukocyte markers MAC387 (marker of neutrophils, activated monocytes) and CD163 (monocyte/macrophage-specific marker) was performed on archived lamellar tissue samples from an experimental model of SRL in which one forelimb was maintained at ambient temperature (AMB) and one forelimb was immersed in ice water (ICE) immediately following enteral oligofructose administration (10\ua0g/kg, n\ua0=\ua014 horses). Lamellae were harvested at 24\ua0h post-oligofructose administration (DEV, n\ua0=\ua07) or at the onset of OG1 laminitis (OG1, n\ua0=\ua07). Both MAC387-positive and CD163-positive cells were counted by a single blinded investigator on images [n\ua0=\ua010 (40× fields/digit for MAC387 and 20\ua0x fields/digit for CD163)] obtained using Aperio microscopy imaging analysis software. Data were assessed for normality and analyzed with a paired t-test and one-way ANOVA with significance set at p\ua

    Variability of gene expression profiles in human blood and lymphoblastoid cell lines

    Get PDF
    BACKGROUND: Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets. RESULTS: Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range rho = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P &lt; 1*10(-16)) with higher variability (P &lt; 1*10(-16)) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (rho = 0.83; rho = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (rho = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs. CONCLUSION: Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies

    Short Sleep Is Associated With Low Bone Mineral Density and Osteoporosis in the Women’s Health Initiative

    Full text link
    Short sleep duration, recognized as a public health epidemic, is associated with adverse health conditions, yet little is known about the association between sleep and bone health. We tested the associations of usual sleep behavior and bone mineral density (BMD) and osteoporosis. In a sample of 11,084 postmenopausal women from the Women’s Health Initiative (WHI; mean age 63.3â years, SD = 7.4), we performed a crossâ sectional study of the association of selfâ reported usual hours of sleep and sleep quality (WHI Insomnia Rating Score) with whole body, total hip, femoral neck, and spine BMD using linear regression models. We also studied the association of sleep duration and quality with dualâ energy Xâ ray absorptiometry (DXA)â defined low bone mass (Tâ scoreâ <â â 2.5 to <â 1) and osteoporosis (Tâ scoreâ â ¤â â 2.5) using multinomial regression models. We adjusted for age, DXA machine, race, menopausal symptoms, education, smoking, physical activity, body mass index, alcohol use, physical function, and sleep medication use. In adjusted linear regression models, women who reported sleeping 5â hours or less per night had on average 0.012 to 0.018â g/cm2 significantly lower BMD at all four sites compared with women who reported sleeping 7â hours per night (reference). In adjusted multinomial models, women reporting 5â hours or less per night had higher odds of low bone mass and osteoporosis of the hip (odds ratio [OR] =â 1.22; 95% confidence interval [CI] 1.03â 1.45, and 1.63; 1.15â 2.31, respectively). We observed a similar pattern for spine BMD, where women with 5â hours or less per night had higher odds of osteoporosis (adjusted OR = 1.28; 95% CI 1.02â 1.60). Associations of sleep quality and DXA BMD failed to reach statistical significance. Short sleep duration was associated with lower BMD and higher risk of osteoporosis. Longitudinal studies are needed to confirm the crossâ sectional effects of sleep duration on bone health and explore associated mechanisms. © 2019 American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154418/1/jbmr3879_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154418/2/jbmr3879.pd
    corecore